Introduction	A' searches at Jefferson Lab	LDM experiments with <i>e</i> ⁺ beam	Secondary Beams	Conclusions
000		000	0000	0

Opportunities beyond hadron physics: the physics case

Luca Marsicano

INFN - Genova J-FUTURE Workshop, Messina, Italy

March 29, 2022

INFN - Genova J-FUTURE Workshop, Messina, Italy

Opportunities beyond hadron physics: the physics case

Luca Marsicano

Introduction 000	A' searches at Jefferson Lab	LDM experiments with <i>e</i> ⁺ beam 000	Secondary Beams 0000	Conclusions 0
Outline				
Intro	duction to vector-me	ediated Light Dark Mat	ter	
A' Se	earches At Jefferson	Lab		

APEX Heavy Photon Search BDX-mini BDX

LDM opportunities with a primary e^+ beam

PADME-like Missing Energy

Opportunities with secondary beams at JLab

Muon Beam Neutrino Beam

Conclusions

Luca Marsicano

INFN - Genova J-FUTURE Workshop, Messina, Italy

Vector Mediated Light Dark Matter

- Plenty of cosmological/ astrophysical observations: CMB anisotropies, galaxy rotation curves, gravitational lensing,cluster collisions...
- No hints on DM particle properties (mass, cross section) from particle physics experiment
- "vector-portal": DM-SM interaction trough a new U(1) gauge-boson ("dark-photon") coupling to electric charge

Luca Marsicano

INFN - Genova J-FUTURE Workshop, Messina, Italy

Dark Photon Signatures

(a) secluded scenario.

No constraints provided by cosmology for accelerator-based experiments: any ε value is allowed

- (b) visible decay scenario (although off-shell $\chi\bar{\chi}$ production is allowed)
- (c) invisible decay scenario A' decays to Dark Sector invisible particles

Luca Marsicano

INFN - Genova J-FUTURE Workshop, Messina, Italy

Introduction	A' searches at Jefferson Lab	LDM experiments with e^+ beam	Secondary Beams	Conclusions
000				

Dark Photon Production Mechanisms With Lepton Beams

Three main production mechanisms in fixed targets, lepton beam experiments:

- (a) A'-**strahlung**: Radiative A' emission in nucleus EM field - scales as $Z^2 \alpha_{EM}^3$. Forward-boosted, high-energy A'emission
- (b) e^+e^- annihilation: scales as $Z\alpha_{EM}^2$. Forward-backward A' emission in the CM
- (c) **Resonant** e^+e^- annihilation: resonant Breit-Wigner like cross section with $m_{A'} = \sqrt{2m_eE} - Z\alpha_{EM}$ scaling.

INFN - Genova J-FUTURE Workshop, Messina, Italy

Luca Marsicano

Introduction 000	A' searches at Jefferson Lab ●0000000	LDM experiments with e ⁺ beam 000	Secondary Beams 0000	Conclusions 0
APEX				

APEX

- dark photon searched for as peak of invariant mass (reconstructed from both arms): e⁻ in LHRS and e⁺ in RHRS
- Standard HRS detector stack in both arms: Scintillators: S0 and S2 (timing), VDC (tracking), Cherenkov and Calorimeters (PID)

Luca Marsicano

INFN - Genova J-FUTURE Workshop, Messina, Italy

Introduction	A' searches at Jefferson Lab	LDM experiments with e ⁺ beam	Secondary Beams	Conclusions
000	○●○○○○○○		0000	0
APEX				

APEX estimated limits

Preliminary test on blinded invariant mass spectrum: limits for 10% spectrum

Luca Marsicano

INFN - Genova J-FUTURE Workshop, Messina, Italy

Luca Marsicano

INFN - Genova J-FUTURE Workshop, Messina, Italy

Introduction	A' searches at Jefferson Lab	LDM experiments with e ⁺ beam	Secondary Beams	Conclusions
000	○○●●○○○○	000	0000	0
Heavy Photon Sea	arch			

HPS status and estimated reach

- First engineering run in 2015
- Analysis of data from 2016 physics run is complete
- Collaboration busy with calibration and analysis of 2019 and 2021 data.
- Physics goals expanded to other long-lived particle searches, e.g., SIMPs.

INFN - Genova J-FUTURE Workshop, Messina, Italy

Luca Marsicano

Introduction	A' searches at Jefferson Lab	LDM experiments with e ⁺ beam	Secondary Beams	Conclusions
000	○○○●○○○	000	0000	0
BDX-mini				

BDX-mini

Electron beam dump experiment at Jefferson Lab

- CEBAF 2 GeV e⁻ beam impinging on the dump
- secondary beam of χ particles beam produced through all previously discussed physics reactions
- Compact PbWO₄ detector (3.7 × 10³ cm³) placed in a pipe dug 25 m behind the dump
- Neutral-current scattering on atomic ethrough A' exchange, recoil releasing visible energy O(100 MeV)

See EPJ C 81:164 (2021)

INFN - Genova J-FUTURE Workshop, Messina, Italy

Luca Marsicano

Introduction	A' searches at Jefferson Lab	LDM experiments with <i>e</i> ⁺ beam	Secondary Beams	Conclusions
000	○○○○○●○○		0000	0
BDX-mini				

BDX-mini reach

Measurement took place in spring-summer 2020

- collected $\sim 3 \times 10^{21}$ EOT
- beam enrgy: 2.176 GeV
- beam current up to 150 μA
- beam-on and beam-of measurements alternate (50% beam-on time) to estimate cosmic backgrounds

Luca Marsicano

INFN - Genova J-FUTURE Workshop, Messina, Italy

	A' searches at Jefferson Lab	LDM experiments with e^+ beam	Secondary Beams	Conclusions
	00000000			
PDV				

BDX: Beam Dump eXperiment Natural evolution of BDX-mini: 11 GeV e⁻ beam - approved experiment at Jefferson

Lab

Experimental Setup:

- Detector installed O(20 m) behind Hall-A beam -dump, in a new experimental hall (see M. Bondì talk)
- Passive shielding layer between beam dump and detector to reduce SM beam-related background

Detector Design:

- EM calorimeter: Csl(Tl) crystals+SiPM readout (active volume ~ 0.5 m³)
- Dual active-veto layer made of plastic scintillator counters + SiPM readout
- Passive lead layer surrounding the calorimeter

INFN - Genova J-FUTURE Workshop, Messina, Italy

Luca Marsicano

Introduction	A' searches at Jefferson Lab	LDM experiments with e ⁺ beam	Secondary Beams	Conclusions
000	○○○○○○●	000		0
BDX				

Probing muon-philic forces with BDX

- Sizable flux of high energy muons produced in the dump by the interaction of the e⁻ beam (see Talk by A.Fulci)
- Use the secondary muon beam to produce exotic particles accounting for g - 2 anomaly

see Phys. Rev. D 98, 115022 (2018)

Luca Marsicano

INFN - Genova J-FUTURE Workshop, Messina, Italy

Light Dark Matter Opportunities With Positron Beams

- Ongoing discussion on the possibility to realize positron beam at JLab
- LDM experiments with e⁺ can fully exploit annihilation processes
- b) and c) can be a more efficient production process than a), given the better α scaling

An Experim Beams at Je	ental Program with Pos fferson Lab	sitron
In this topical o	collection (21 articles)	450
	< Page	1 012 1
Regular Article - Experimental P A measurement of two with positron beams John R. Arrington, Mikhail 1 > Devriced PDF (731KB)	teses ⊱photon exchange in Super-Rosenbluth sep furov ⇒ View Article	Anne-319
Regular Atticle - Theoretical Phy Virtual Compton scatto Berbara Pasquini, Marc Va > Dewnload PDF (110003)	nics sing at low energies with a positron beam intertrangtion = View Article	Artide 316

Luca Marsicano

INFN - Genova J-FUTURE Workshop, Messina, Italy

Introduction	A' searches at Jefferson Lab	LDM experiments with e ⁺ beam	Secondary Beams	Conclusions
000		○●○	0000	0
PADME-like				

Thin Target Setup

Thin target approach: PADME-like eperiment

- 100 nA, 11 GeV e⁺ beam impinging on 100 μm thin carbon target
- A' produced via $e^+e^- \rightarrow \gamma A'$ process
- outgoing photon measured in electromagnetic calorimeter and missing mass computed:
 M²_{miss} = (P_{beam} + P_{target} P_γ)²
- search for a M²_{miss} peak over smooth SM background

e+ Beam Target B⊗ V

INFN - Genova J-FUTURE Workshop, Messina, Italy

Opportunities beyond hadron physics: the physics case

Luca Marsicano

Introduction	A' searches at Jefferson Lab	LDM experiments with <i>e</i> ⁺ beam	Secondary Beams	Conclusions
000		○○●	0000	0
Missing Energy				

Thick Target Setup

- Missing energy experiment with a 11 GeV positron beam
- e⁺ impinging on active thick target (ECAL); A' produced via resonant process e⁺e⁻ → A'
- large missing energy as LDM production signature: E_{miss} = E_{beam} - E_{ECAL}
- HCAL to detect neutral particles escaping the ECAL mimicking signal

Non-trivial beam structure necessary:

INFN - Genova J-FUTURE Workshop, Messina, Italy

Luca Marsicano

Introduction	A' searches at Jefferson Lab	LDM experiments with e ⁺ beam	Secondary Beams	Conclusions
000		000	●○○○	0
Muon Beam				

Extracted muon beam at JLab

- Secondary muons produced in the Hall-A beam dump can be extracted and directed towards a new hall behind the dump bunker
- Muons may be tagged with a time of flight (TOF) system.
- Feasibility study ongoing (see A. Fulci talk)

Luca Marsicano

INFN - Genova J-FUTURE Workshop, Messina, Italy

Introduction	<i>A</i> ′ searches at Jefferson Lab	LDM experiments with <i>e</i> ⁺ beam	Secondary Beams	Conclusions
000	00000000	000	0●00	0
Muon Beam				

Proton radius measurement with muon beam

- Proton radius can be measured with 2 techniques:
 - Leptonic scattering
 - Spectroscopic measurement
- ► $\sim 3\sigma$ discrepancy between methods \rightarrow Proton radius puzzle
- ► Electron scattering measurement affected by radiative corrections → need for intense muon beam for complementary µp scattering. Collect muons behind Hall-A?

Luca Marsicano

INFN - Genova J-FUTURE Workshop, Messina, Italy

Introduction	A' searches at Jefferson Lab	LDM experiments with e ⁺ beam	Secondary Beams	Conclusions
000		000	○○●○	0
Neutrino Beam				

Secondary ν beam at JLab

- A large flux of neutrinos is produced in the Hall-A beam-dump from π and μ decay
- Energy range ~few MeVs O(100 MeV)
- Intensity $10^{-3} \frac{\nu}{m^2 EOT}$ at ~10 m above the dump
- Weak angular dependence

INFN - Genova J-FUTURE Workshop, Messina, Italy

< (T) >

Opportunities beyond hadron physics: the physics case

Luca Marsicano

Introduction	A' searches at Jefferson Lab	LDM experiments with <i>e</i> ⁺ beam	Secondary Beams	Conclusions
000	00000000	000	○○○●	0
Neutrino Beam				

$CE\nu NS$ measurement at JLab

Coherent Elastic Neutrino Nucleus Scattering ($CE\nu NS$):

- Low energy neutrinos (< 50 MeV) coherently scatter on entire target nucleus: q < ¹/_{Rw}
- Cross section scaling with N^2
- Low recoil energy due to kinematics: $\Delta E_{max} \simeq \frac{2E_n^2}{M}$ O(100 KeV) in IAR
- First measurement in 2017 on CsI(Na)

Why interesting?

- sterile neutrinos
- neutrino magnetic moment
- non standard interactions (NSI) mediated by exotic particles
- weak nuclear charge

Possibility to run an $CE\nu NS$ experiment at JLab currently under study (See M.Bondì talk)

Luca Marsicano

INFN - Genova J-FUTURE Workshop, Messina, Italy

Introduction	A' searches at Jefferson Lab	LDM experiments with e ⁺ beam	Secondary Beams	Conclusions
000	00000000		0000	•

Conclusions

- Jefferson Lab features a rich BSM experimental program (HPS, BDX-mini, APEX)
- New developments are expected in the nearby future: the Beam Dump eXperiment can run in the next few years provided the new hall is built
- The realization of a positron beam at Jefferson Lab paves the way to new competitive LDM experiments
- Secondary beams produced in the Hall-A dump (muons, neutrinos) can be exploited to explore "hot" physics scenarios (proton radius, CEvNS).

Luca Marsicano