u-Channel Physics Observables at Future CLAS

Wenliang 'Bill' Li (SBU, W&M, Jlab EIC²), Stefan Diehl (Justus Liebig University Giessen, UCONN) Kijun Park (HUPTI)

March/28/20221

@ JFuture Workshop

Outline

- Important CLAS 6 measurements on *u*-Channel Physics
- Thoughts on future CLAS 12 upgrades and opportunities
 - u-Channel π^0 and DVCS @ CLAS 12
 - u-Channel J/ψ @ CLAS 24
 - u-Channel Beam Spin Asymmetry
- J/ψ electroproduction at CLAS 24

Probing Soft-Hard Transition through Hard meson production

GPD and TDA (Hard Structure)

Complete description of Nucleon

Description to the unseen side of proton

- **GPD**: It is extracted predominantly based in the forward angle observables.
- **TDA**: meson-nucleon Transition Distribution Amplitude (TDA) only accessible through backward (u-channel) meson production.

GPD vs TDA Diagrams

forward

- Factorization: $Q^2 \rightarrow$ large, $-t \rightarrow$ small, $-t/Q^2 \sim 0$
- Systematically study forward DVCS & DVMP
- Factorization indicator:
 - σ_L >> σ_T
 - dσ_L/dt ∝ 1/Q⁶
- Factorization conclusion results from most meson production channels.

- Factorization: $Q^2 \rightarrow$ large, $-u \rightarrow$ small, $-u/Q^2 \sim 0$
- Systematically study backward DVCS & DVMP?
- Factorization indicator:

backward

θ(CM)

- $d\sigma_T/dt \propto 1/Q^{10} (d\sigma_T/d\Omega \propto 1/Q^8)$
- Factorization conclusion results from most meson production channels.

CLAS 6 Backward π^+ Electroproduction

Validation of TDA Factorization Scheme

A new measurement needed to simultaneously study TDA

E12-20-007 Backward-angle 1 H(*e*,*e*'*p*) π^{0}

 π^0

e

- Q² coverage: 2.0 < Q² < 6.25 GeV², at x=0.36 and W > 2 GeV L/T separated cross section @ Q²= 2, 3, 4 and 5 GeV².
- *u* coverage: 0 < -*u*' +0.5 < 0.5 GeV²
- Additional W scaling check @ Q² = 2 GeV²
- Additional Q^2 scaling check @ Q^2 = 6.25 GeV²

A Complete -t Evolution Backward-angle Peaks

u-Channel Opportunities at CLAS 12

Harvesting u-channel meson production cross section at near u_{min} kinematics at Hall B CLAS12 (expert opinion by S. Diehl)

- π^{0} : good acceptance for -*t* of 5-6 GeV². u-channel measurements not possible.
- π^+ : full coverage of the *t* and *u* acceptance.
- $\rho/\omega \rightarrow \pi^+\pi^-$: decay well measured, full coverage of the *t* and *u* acceptance.
- $\phi \rightarrow K^+K^-$: full coverage of the t and u acceptance, very limited statistics at small u.

Possibility to address *u*-channel π^0 issue in the near future?

u-Channel DVCS at CLAS 12 with Upgrade

u-Channel J/ ψ at CLAS 24

Central-backwa dilepton tag

$$J/\psi \rightarrow e^+e^-$$
 and $J/\psi \rightarrow \mu^+\mu^-$

- JLab 24 GeV (potential 10x luminosity) open new possibilities for u-Channel meson productions: $e+p\rightarrow e'p'J/\psi$
 - Probing intrinsic cc-bar content of the target nucleon at the valence quark region.
 - \circ Rate projection could be done based on the t-Channel J/ ψ production process
 - Di-lepton capability needs to be investigated.

CLAS 6 Backward Beam Spin Asymmetry Result

Key 6 GeV CLAS result #2

u-Channel Beam Spin Asymmetry (S. Diehl, et. al):

- Longitudinally polarized e beam on a unpolarized target
- Average e polarization was 75%
- Result indicating a sudden change of sign for $\sigma_{i,\tau}$ indication sudden change of production mechanism
- Similar study at 12 GeV will be done for π^+ , ρ/ω , ϕ

Testing Nuclear Color Transparency via u-Channel meson Production

Thank You! And Our Final Thoughts

We must consider to give CLAS12 and CLAS24 with appropriate equipment to probe u-channel processes.

Question to us: are we going to give-up on u-Channel study because it is too hard to understand?

TDA

Backup slides

GPD vs TDA Fact sheet 3

• Formalism: four compact structures

$$\begin{split} &\int_{-1}^{1} dx H_q(x,\xi,t) = F_1^q(t), \quad \int_{-1}^{1} dx E_q(x,\xi,t) = F_2^q(t), \\ &\int_{-1}^{1} dx \tilde{H}_q(x,\xi,t) = G_A^q(t), \quad \int_{-1}^{1} dx \tilde{E}_q(x,\xi,t) = G_P^q(t), \end{split}$$

• Formalism: experimentalist friendly, directly linked to cross section (example later)

$$H^{\pi N}_{s.f.} = \{V^{\pi N}_{1,2}, A^{\pi N}_{1,2}, T^{\pi N}_{1,2,3,4}\} \quad \pi {\leftrightarrow} \mathsf{p} \, \mathsf{TDAs}$$

$$H_{s.f.}^{\gamma N} = \left\{ V_{1arepsilon}^{\gamma N}, A_{1arepsilon}^{\gamma N}, \, T_{1arepsilon,\,2arepsilon}^{\gamma N}
ight\}$$
 y \leftrightarrow p TDAs

17

TDA Meson Production Cross Section

Testing Nuclear Color Transparency at JLab

Moving freely (within nuclei) due to CT

New way of Testing Nuclear Color Transparency

- *u*-Channel π^0 : ¹²C(e,e'p)X π^0 , electroproduction to probe ¹²C(e,e'p)X π^0
- Two fold assumption:
 - $\sigma_{\tau} >> \sigma_{I}$, thus, TDA Collinear factorization is valid.
 - Color Transparency indicate early scaling.
- No additional measurement needed for ¹²C as a initial test.

Predicted nuclear CT via ${}^{12}C(e,e'p)X\pi^0$

Observation of CT will add strong evidence invalidating TDA

G. Huber, W.B. Li, W. Cosyn, B. Pire arxiv.org/abs/2202.04470