Opportunities beyond hadronic physics @JLAB: Future infrastructures

Mariangela Bondì INFN - Sezione di Roma Tor Vergata

Università di Roma Tor Vergata

Outline

- New research lines using secondary beams produced by interaction of e- beam and dump:
 - Light Dark Matter beam: BDX experiment
 - > Neutrino beam: Coherent elastic v-Nucleus scattering measurement
- LDM search with positron beams:
 - ➤ thin target approach
 - > thick target approach

The Beam Dump eXperiment - BDX

- BDX is a JLAB experiment approved by PAC46
- Unique experiment able to PRODUCE and DETECT light dark matter
- Two step experiment:
 - production of LDM beam
 - detection of LDM particle: χ scatters on e- in the detector realising visible signal

The experiment is designed with two goals

- Maximize production and detection of LDM
 - high intensity beam
 - ~1m3 detector medium/high density material

- Reduce backgrounds
 - cosmic backgrounds
 - beam-related backgrounds
 - passive shielding material and active veto system

BDX @ JLAB

JLAB offers the best condition for BDX

- A high energy beam: 11 GeV
- > The highest available electron beam current: ~65uA (currently)
- Charge : 10²² EOT
- > Fully parasitic wrt Hall-A physics program
- * New facility to be built in front of Hall-A beam dump
 - Passive shielding layer between beam dump and detector to reduce SM beam-related background
 - Sizeable overburden (~10 m water-equivalent) to reduce cosmogenic background
 - New underground hall (~8m) at 25 m downstream hall-A beam dump that will host the detector
- Detector with 2 components: Ecal + Veto system

BDX detector

- Inner detector
 - > Active volume requirement:
 - Sensitivity to high-energy EM shower
 - Technology: homogeneous EM calorimeter made with CsI(TI) crystals and SiPM readout
 - High crystal density: maximize event yield with compact detector
 - Reuse BaBar crystals
- Veto System
 - Active volume requirement:
 - high efficiency for charge particle detection
 - hermeticy and compactness
 - > Technology:
 - two layers of plastic scintillator counters, made of different paddles each read by WLS fibers + SiPMs
 - 5 cm lead vault between active veto and calorimeter to shield photons

BDX detector assembly

- Detector design:
 - > 800 CsI(TI) crystals, total interaction volume ~0.5m3
 - modular detector
- Arrangement:
 - > 1 module: 10x10 crystals, 30-cm long. Front face: 50x50 cm2
 - > 8 modules: interaction length: ~2.6 m
- DM signal:
 - presence of an EM shower O(100MeV) coupled null activity in the active veto system

★ BDX technology validated in a 2 GeV e-beam test run (BDX-MINI@JLab) performed in 2020-21 with 0.15% of BDX active volume (~50 PbWO crystals) and 20% of BDX EOT (2 1021 EOT). Despite the reduced size of the experiment, the physics result is comparable to previous experiments (see L. Marsicano talk)

BDX Status & Prospective

- BDX is a JLAB experiment approved by PAC46 with the highest scientific rating
- It is part of FY 2021 Annual Laboratory Plan
- JLAB has supported the several experimental initiatives proposed by BDX-collaboration
- BDX is a mature experiment: a lot of work on simulations, detector R&D, background rejection
- To run BDX a new hall is mandatory:
 - Application to DOE-FOA and NFS-MRI grants: no positive result obtained BDX high
- Parasitic run with MOLLER

BDX in the upgraded CEBAF era

- CEBAF @ high-lumi
 - No new infrastructures are necessary
 - > BDX can take advantage of high-lumi beam immediately
 - CEBAF @ 24 GeV
 - > New infrastructures could be necessary
 - Beam-related background has to be evaluated
 - new shielding between dump and detector ^E
 - BDX@24GeV reach has to be estimated

vBDX-CEvNS

- Coherent Elastic v-Nucleus Scattering
 - The largest cross section among neutrino scattering channels for Ev < 100 MeV</p>
 - Cross section is approximately proportional to N²
 - Recoil energy transfer to the nucleus is O(10keV)
 - COHERENT has established the first detection of CEvSN

* Requirements:

- ➢ High-intense v-flux
- > v-flux energy range: few MeV few 100 MeV
- detector has be sensitive to small energy depositions
- backgrounds need to be sufficiently small to observe the signal.

vBDX-CEvNS

- v-beam @ JLAB
 - Produced by the interaction between e- beam and Hall A dump in a energy range: 10MeV - 300 MeV
 - Neutrino flux : $\sim 10^{18}$ v/m² at ~ 10 m above the dump for 10^{22} EOT \succ

Infrastructures:

- Detector located 10m on top of the dump \succ
- No peculiar civil construction is demanded \succ
- \succ Two detection technology are under study:
 - Csl
 - LAr-TPC
- Integrated Veto system: active (plastic ...) and passive (lead, water, borate silicone and/or cadmium sheet layers...)
- Backgrounds:
 - beam-related background: neutron >
 - beam-unrelated background: cosmic, radioactive detector \succ contamination, environmental radioactivity
 - Extensive Monte-Carlo simulations and measurements campaign in \succ situ are necessary

10 Credit to A. Fulci, S. Grazi, A. Pilloni

vBDX-CEvNS @ 24 GeV

- CEBAF @ high luminosity
 - Increasing of statistic
 - > vBDX can take advantage of high-lumi beam immediately

Credit to A. Fulci, S. Grazi, A. Pilloni ¹¹

* CEBAF @ 24 GeV:

- > neutrino flux : ~2*10¹⁸ v/m² at ~10 m on top of the dump for $10^{21}EOT$
- Increasing of a factor ~2 than CEBAF@12GeV case
- > Beam-related background has to be evaluated
- Extensive Monte-Carlo simulation and measurements campaign in situ are necessary

LDM searches with e+ beam: Thin Target approach

Approach:

- ➢ e+ beam on thin target
- A' production via e+e- -> γA'
- Produced A' leaves the detector volume without interacting
- > Detect the final-state γ in a EM calorimeter and compute the missing mass :

 $\mathsf{M}^{2}_{\mathsf{MISS}} = (\mathsf{P}_{e} + \mathsf{P} - \mathsf{P}_{y})^{2}$

- Signal:
 - a peak in the missing mass distribution over a smooth SM background

Backgrounds:

- All process resulting in a single γ hitting the calorimeter:
 - Bremsstrahlung
 - e+e- -> үү ; e+e- ->үүү

M. Battaglieri et al., Light dark matter searches with positrons Eur. Phys. J. A 57, 253 (2021)

LDM searches with e+ beam: Thin Target approach

- Beam parameters:
 - Energy : 11 GeV (max mA' ~ 100 MeV)
 - ➤ Current: 100 nA
 - Continuous structure
 - Momentum dispersion < 1%</p>
 - Angular dispersion < 0.1 mrad</p>

Apparatus:

- > 100 um C target
- Constant magnetic field of ~ 1 T over a 2m region downstream the target to bend charge particles
- > 50 cm radius EM calorimeter; energy resolution $\sigma(E)/E\sim0.02/sqrt(2)$
- Crystal front face 1x1 cm2; angular resolution: 0.5 mrad
- Veto system (plastic scintillator) to reject background events (mainlys breamstralung

M. Battaglieri et al., Light dark matter searches with positrons Eur. Phys. J. A 57, 253 (2021)

LDM searches with e+ beam: Thin Target approach

EXISTING

NEW

- Beam parameters:
 - Energy : 11 GeV (max mA' ~ 100 MeV)
 - Current: 100 nA
 - Continuous structure
 - Momentum dispersion < 1%</p>
 - Angular dispersion < 0.1 mrad</p>

Reusable PADME component:

- Target can be easily transferred and installed @JLAB
- Calorimeter meets all requirement of the experiment (energy and angular resolution, dimension)
- Technology and front-end of veto system can be reused
- Crystal front face 1x1 cm2; angular resolution:
- New DAQ is necessary

M. Battaglieri et al., Light dark matter searches with positrons Eur. Phys. J. A 57, 253 (2021)

LDM searches with e+ beam: Thick Target

Approach:

- e+ beam on thick active target
- Primary e+ produces an EM shower in the target (large number of secondary positrons produced)
- A' production via e+e- -> A'->XX
- Produced A' leaves the detector volume without interacting
- Signal events are identified when the missing energy Emiss, exceeds a minimum threshold value.

Signal:

 a peak in the missing energy distribution at a value depending solely on the dark photon mass (mA' = 2meEmiss)

LDM searches with e+ beam: Thick Target setup

Beam parameters:

- ➢ Energy : 11 GeV
- ➢ Low beam current : 1e+ per µs
- R&D necessary to achieve such beam structure

Apparatus:

- EM calorimeter 10x10 matrix of 2x2x25 cm3 PbWO4 crystals (28X0 lenght)
- Hadronic calorimeter modular iron/scintillator inhomogeneous calorimeter surrounding the ECAL to avoid any particle leakage
- Fast magnetic deflector in front of detector, synchronized to the beam 60 Hz frequency, in order to transport the positrons belonging to the high-current pulses to a suitable beam-dump

A non-trivial time structure of the beam is required to avoid e^+ beam pile-up in the detector.

16

Summary

- Several future initiatives to explore "hot" cases beyond hadron physics using the secondary beams and positron beams
 - > new and/or modified infrastructures in terms of civil constructions and detectors are required.
- LDM secondary beam will be used in BDX experiment. It will be performed in the nearby future provided the new hall is built
- A recent idea to measure CEvNS exploiting neutrino flux is under study.
- The availability of e+ beams will allow to perform two complementary measurements able to investigate vast unexplored regions in the LDM parameters space.
 - > thin target approach: conceptual design is already mature
 - > thick target approach: R&D activity on beam and detector

BDX inner detector

Active volume requirement:

- Sensitivity to high-energy EM shower
- Technology: homogeneous EM calorimeter made with CsI(TI) crystals and SiPM readout
 - High crystal density: maximize event yield with compact detector
 - Homogeneous solution: minimize dead-spaces and passive materials
 - Detector segmentation implemented with modular design - each modulus being a matrix of crystals
 - SiPM readout: reduce dead spaces between moduli compared to traditional PMT readout

BDX veto system

Active volume requirement:

- > high efficiency for charge particle detection
- hermeticy and compactness

Technology:

- two layers of plastic scintillator counters, made of different paddles each read by WLS fibers + SiPMs
- 5 cm lead vault between active veto and calorimeter to shield photons

BDX Backgrounds

Cosmogenic Background

- Measured with the BDX prototype at INFN-LNS, with similar overburden as expected at JLAB
- Using vetos in anti-coincidence and high energy threshold O(350MeV), cosmic background is negligible

Beam-related Background

- Estimated through MC simulations
 - MC simulations validated with on-site measurement
- 6.6 iron shield +2m concrete enough to range-out high energy muons
- > Neutrinos: only particles reaching the detector
 - High-energy v from in-flight decays of pion and kaon
 - Possible background contribution from ve interaction via CC in the detector
 - Estimate: Nv = 5 counts for 10^22 EOT (optimal selection cuts)

· · · · ·	
Threshold	Projected counts
250 MeV	(57 ± 25)
300 MeV	(4.7 ± 2.2)
350 MeV	(0.037 ± 0.022)

E_v(GeV)