Workshop X on Streaming Readout

TriDAS

Laura Cappelli – INFN-CNAF

Co-authors: *Tommaso* Chiarusi¹, *Francesco* Giacomini², Carmelo Pellegrino²

¹ INFN Bologna, ² INFN-CNAF

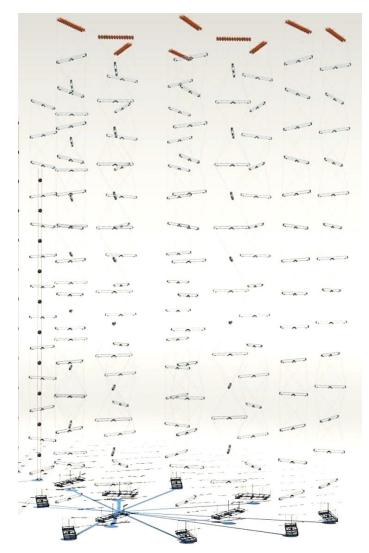
Supported by Italian Ministry of Foreign Affairs (MAECI) as Projects of great Relevance within Italy/US Scientific and Technological Cooperation under grant n. MAE0065689 - PGR00799

Agenda

• The framework

What it is and how it works

• TriDAS@Jlab

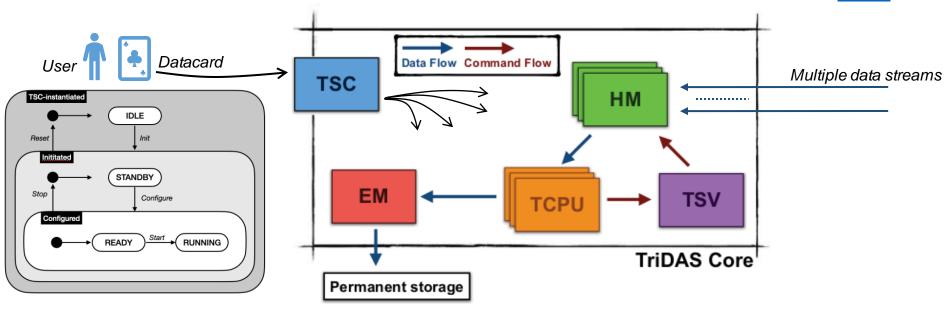

The project and the tests

The framework

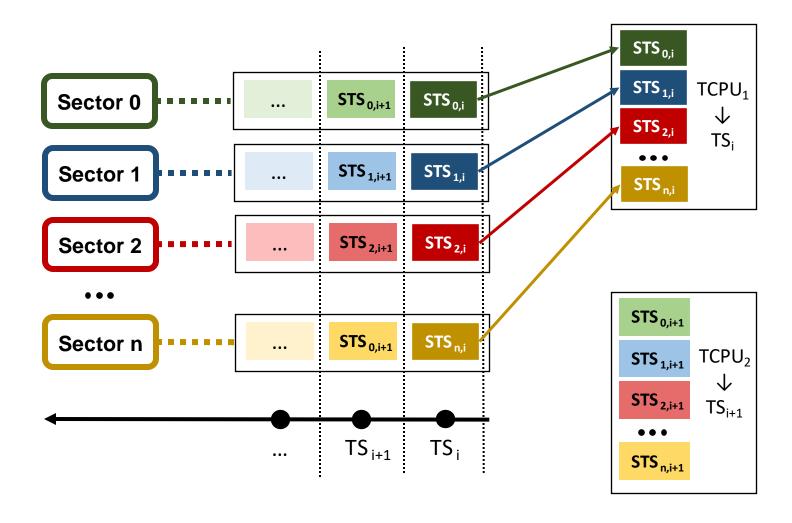
The birth of TriDAS

- Designed for streaming read-out of Astro-particle Physics events
 - NEMO project
 - KM3NeT-ITA (Towers) project
- *All-data-to-shore* approach: the software at the shore station
 - Reads the data streams
 - Reconstructs the events
 - Filters the data to collect only the interesting ones

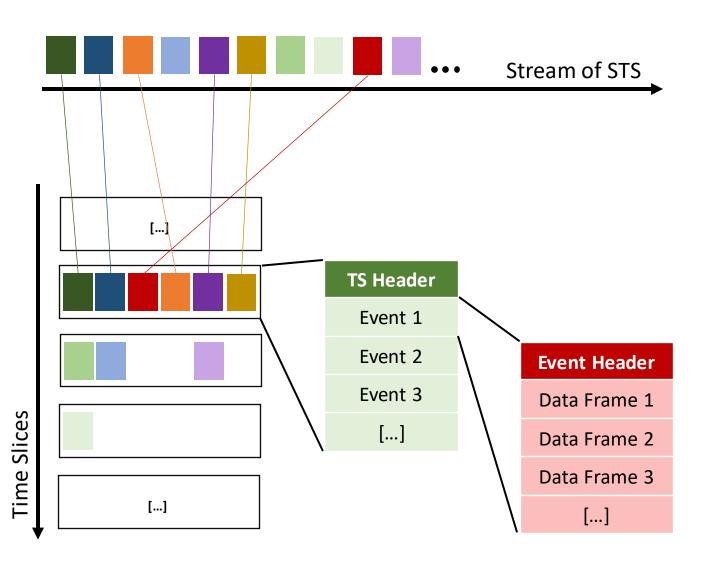
The KM3Net Towers


The TriDAS framework

- TriDAS characteristics:
 - C++17 multithreaded software framework
 - Dependencies: CMake, ZeroMQ, Boost
 - State machine driven process
 - Flexible design:
 - Configurable via datacard (e.g. detector geometry)
 - L2 trigger algorithms in standalone plugins
 - Data format

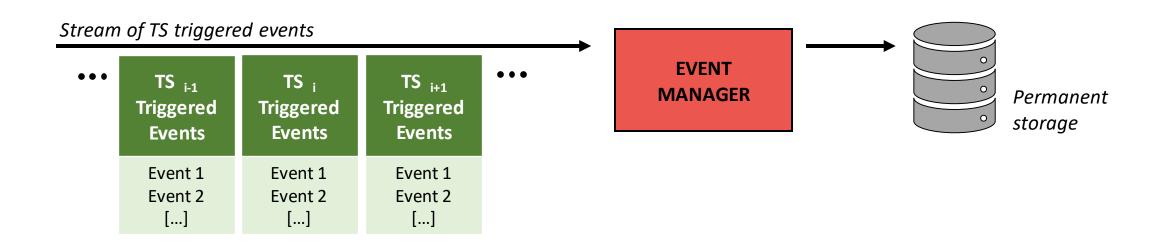

- Composed by 5 modules:
 - HM (Hit Manager)
 - TCPU (Trigger CPU)
 - TSV (TriDAS SuperVisor)
 - EM (Event Manager)
 - TSC (TriDAS System Controller)
- The TriDAS code is available here

Data Flow: the HM aggregation


• Each HM:

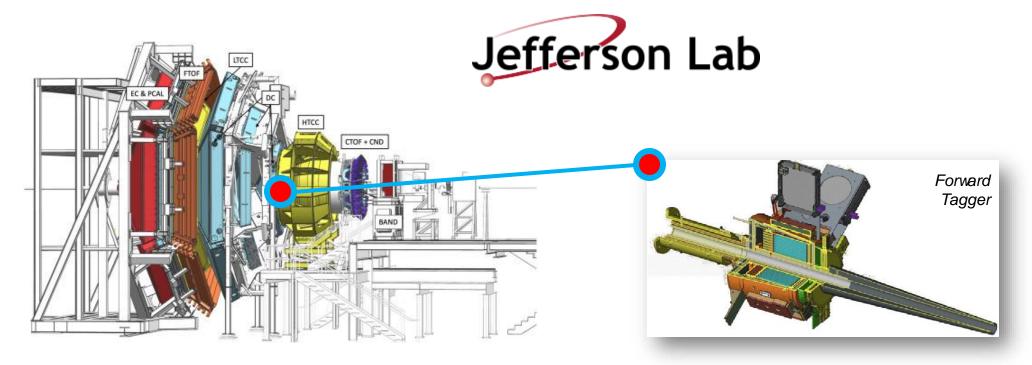
- Collects data from a specific sector of the detector
- Subdivides the data into a sequence of time-ordered bunches called Sector Time Slices (STSs)
 - Fixed time duration called
 Time Slice (TS) chosen at
 run start time via datacard
 parameter (50ms in CLAS12)
- Sends the STSs to a TCPU according to the token received from the TSV
- A TCPU receives all the STSs of a TS

Data Flow: event building & trigger Farnesina Ministero degli Affort Esteri della Cooperaziona le Internazionale

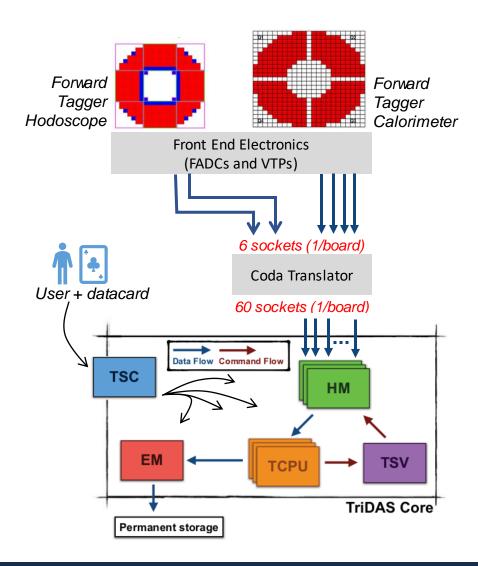

- The TCPU:
 - Receives a stream of STSs
 - The STSs temporal order isn't guaranteed
 - There are many threads, each one arrange the data of a TS
 - Reconstructs events per time window
 - Applies one or more trigger algorithms
 - External plugin selected in the datacard
- At the end of the process, the TCPU has obtained a list of interesting events per TS
 - One event is composed by multiple hits
 - Events and hits found in a TS are time ordered

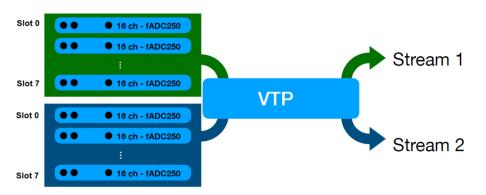
Data Flow: Event Manager

- The TCPUs send to the EM the triggered events for each TS
- The EM:
 - Writes the TSs into some post trigger files
- All the useful event information are stored for further analysis

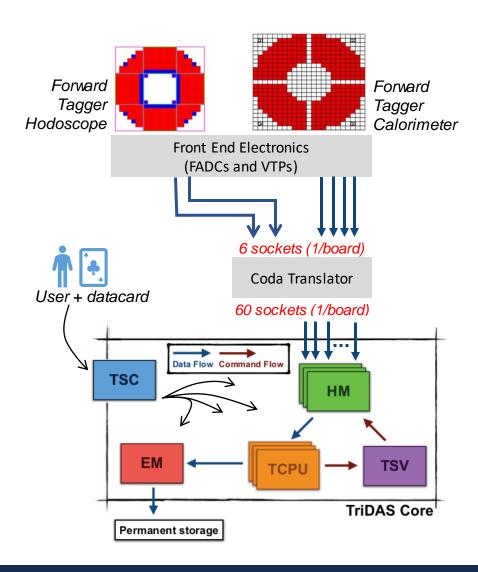

TriDAS @ JLab

A new use-case


- Could TriDAS work efficiently in the DAQ of a nuclear Physics experiment on beam?
 - 2020: "as it is" TriDAS with the CLAS12 Forward Tagger
 - Operating in **triggerless** mode


Test in 2020 – Setup

- System tested on the Forward Tagger sub-detectors
 - 6 streams: 2 streams from 3 VXS Trigger Processors (VTP)
 - Throughput: max 4 GBps per stream, set from few tens of MBps to 100 MBps
 - 16 Flash ADCs 250 (FADC) per VTP, 8 per stream
 - 16 channels per FADC
 - Total channels: 768 (16 ch * 8 FADC * 2 streams * 3 VTP)

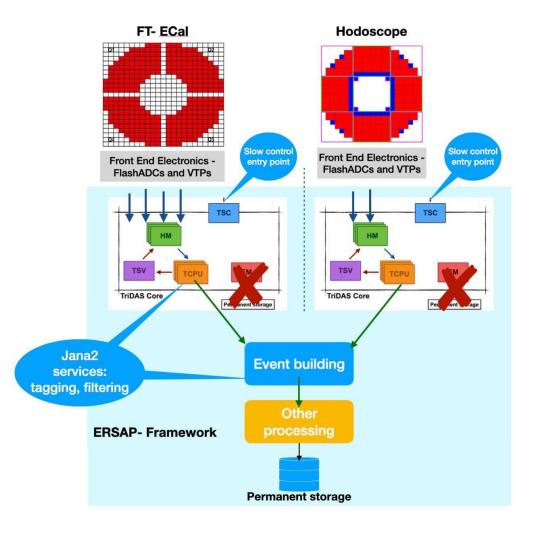


 Between the front-end electronics and TriDAS there was the CODA translator layer

Test in 2020 – Results

- Linux servers used:
 - 48 cores, 1GHz each, 64 GB RAM
 - 3 servers used for all modules
- HM instances: from 5 to 20
 - CPU consumption linear with the number of instances (500% 1600%)
 - Memory occupancy constant (12-13 GB per run)
- TCPUs instances: 10 instances on 2 servers = 20 instances
 - 5 Time Slices at the same time on each instance
 - Trigger: Jana2 plugin (rudimental reconstructions and clustering)
 - CPU consumption: depending on the trigger algorithms (400% 1600%)
 - Memory occupancy: 20-24 GB

From:


F. Ameli et al. "Streaming readout for next generation electron scattering experiments". arXiv: 2202.03085

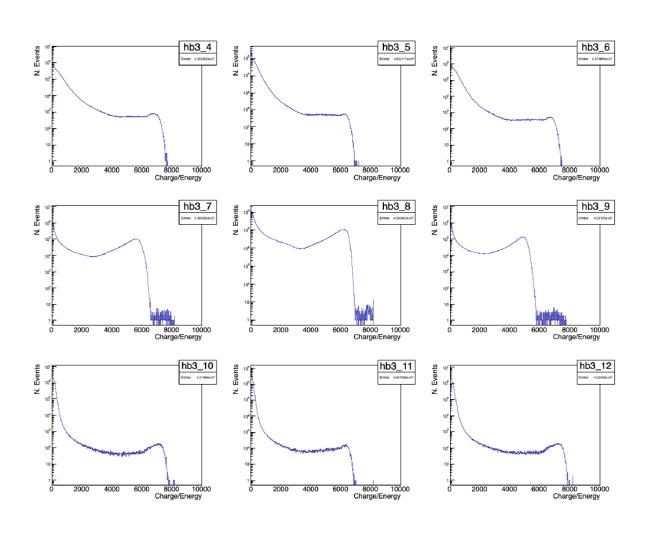
TriDAS-ERSAP integration

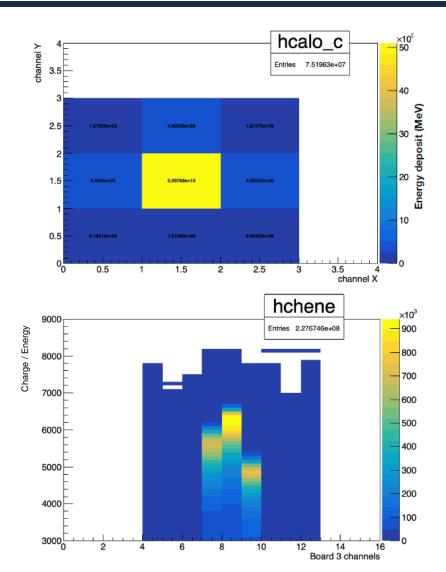
- Next objective: TriDAS ERSAP integration
 - ERSAP, or Environment for Realtime Streaming Acquisition and Processing: JLab micro-services architecture for data-stream acquisition and processing (see <u>Vardan Gyurjyan's talk</u>)
- Code improvements:
 - Update C++ version and code dependencies
 - General review of each component
- TriDAS reviews for ERSAP integration:
 - Remove CODA translator and manage directly the VTP data format
 - The HMs became servers
 - Use multiple instances of TriDAS
 - Remove the EM to directly send the events to ERSAP

Test in 2022

- Tests divided in 2 phases:
 - 1. Validate the new TriDAS implementation without ERSAP
 - Use the VTP data format (instead of CODA translator) and the Event Manager
 - Three tests done:
 - a. Run TriDAS with a two channel pulser to validate the VTP data format
 - b. Run TriDAS with a 3x3 calorimeter to validate the new implementation in a limited environment
 - c. Run TriDAS with the Forward Tagger sub-detectors
 - 2. Validate the TriDAS-ERSAP integration
 - Use TriDAS as ERSAP microservice (without CODA translator and EM)
 - One test on the Forward Tagger Calorimeter with one TriDAS instance

Test in 2022




- Tests divided in 2 phases:
 - 1. Validate the new TriDAS implementation without ERSAP
 - Use the VTP data format (instead of CODA translator) and the Event Manager
 - Three tests done:
 - a. Run TriDAS with a two channel pulser to validate the VTP data format
 - b. Run TriDAS with a 3x3 calorimeter to validate the new implementation in a limited environment
 - c. Run TriDAS with the Forward Tagger sub-detectors
 - 2. Validate the TriDAS-ERSAP integration
 - Use TriDAS as ERSAP microservice (without CODA translator and EM)
 - One test on the Forward Tagger Calorimeter with one TriDAS instance

Test in 2022

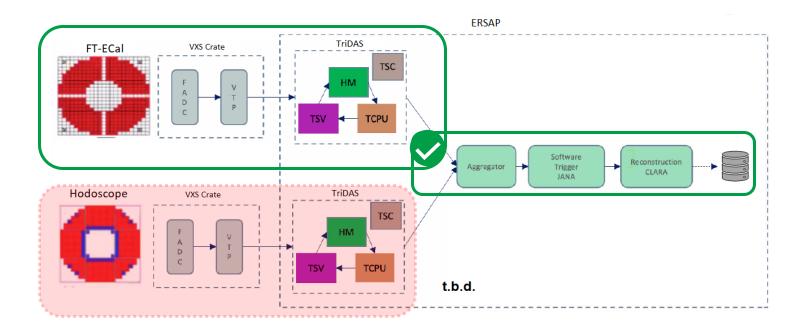
- Tests divided in 2 phases:
 - 1. Validate the new TriDAS implementation without ERSAP
 - Use the VTP data format (instead of CODA translator) and the Event Manager
 - Three tests done:
 - a. Run TriDAS with a two channel pulser to validate the VTP data format
 - b. Run TriDAS with a 3x3 calorimeter to validate the new implementation in a limited environment
 - c. Run TriDAS with the Forward Tagger sub-detectors
 - 2. Validate the TriDAS-ERSAP integration
 - Use TriDAS as ERSAP microservice (without CODA translator and EM)
 - One test on the Forward Tagger Calorimeter with one TriDAS instance

Results: TriDAS & Forward Tagger

- One TriDAS instance on one Linux server:
 - 6 HMs
 - 3 TCPUs (computed 6 parallel TS per TCPU)
 - 1 EM
- Performance:
 - 225 channels detected
 - 5 cores used
 - Memory occupancy constant

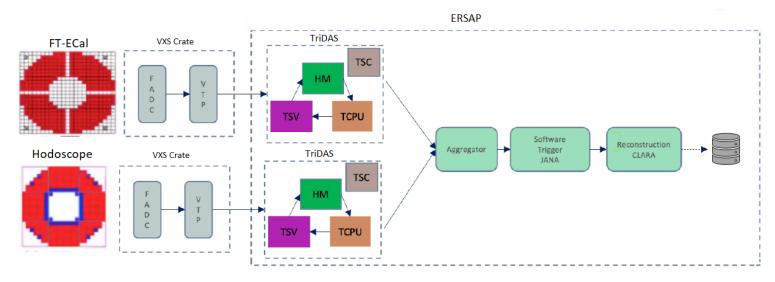
Test in 2022

- Tests divided in 2 phases:
 - 1. Validate the new TriDAS implementation without ERSAP
 - Use the VTP data format (instead of CODA translator) and the Event Manager
 - Three tests done:
 - a. Run TriDAS with a two channel pulser to validate the VTP data format
 - b. Run TriDAS with a 3x3 calorimeter to validate the new implementation in a limited environment
 - c. Run TriDAS with the Forward Tagger sub-detectors
 - 2. Validate the TriDAS-ERSAP integration
 - Use TriDAS as ERSAP microservice (without CODA translator and EM)
 - One test on the Forward Tagger Calorimeter with one TriDAS instance


Results: TriDAS & ERSAP

- One TriDAS instance on one Linux server:
 - 6 HM instances
 - 3 TCPU (6 parallel TS per TCPU)
 - NO EM

- TriDAS ERSAP interface:
 - ZeroMQ library is used
 - The Event-TAG is correctly identified
 - Some issues detected: event payload interpretation to be further checked



Conclusion

- The TriDAS-ERSAP integration is in progress
 - Communication interface under review
- Used also a GEMC-based simulation code to reproduce the CLAS12 data streams
 - New tests will be performed to activate all DAQ components
 - TriDAS shows expected results, and it could be used as cross check validator
 - TriDAS performance and results need to be compared with those obtained from the TriDAS-ERSAP integration
- Goal: use multiple instances of TriDAS as ERSAP microservices

QUESTIONS?