ML for Experiment Calibration and Control

Towards online calibrations and control with the GlueX Central Drift Chamber

Torri Jeske, on behalf of EPSCI / AIEC group

roark@jlab.org

Streaming Readout X

Thursday, May 19 2022

Torri Jeske Physicist: Calibration, Analysis

Diana McSpadden Data Scientist: AI/ML

Nikhil Kalra Data Scientist: Al/ML

Thomas Britton Physicist: Software, OSG, AI/ML

Naomi Jarvis Physicist: Detectors, GlueX Central Drift Chamber

David Lawrence Physicist: C++, Software Frameworks, Online Systems

The Gluonic Excitations Experiment in Hall D

 Designed to search for exotic hybrid mesons produced in photoproduction reactions and study the hybrid meson spectrum

GlueX Central Drift Chamber

- 1.5 m long x 1.2 m diameter cylinder
- 3522 anode wires at 2125 V inside 1.6 cm diameter straws
- 50:50 Ar/CO₂ gas mix
- Used to detect and track charged particles with momenta p > 0.25 GeV/c
- Requires two calibrations: chamber gain and time-to-distance

Offline CDC Calibrations

- Gain: affects PID selections in analysis
 - Sensitive to environmental and experimental conditions
 - Gain correction factor obtained from Landau fit to pulse height, fine tuned using dE/dx
- Time to distance: track fitting, vertex and dE/dx resolution
 - Non-analytic fit function generates 6 unique calibration values
- Calibration values are extracted from fitting histograms (produced via reconstruction software) on a per run basis
 - requires significant computing time, attention from experts

- Quick training and inference times
- Readily available input features
- Robustness to out-of-domain experimental conditions

- Safety constraints
- Interfacing with detector experts and shift takers
- Trustworthiness
- Physics based evaluation metric(s)

Online Calibration and Control with the GlueX Central Drift Chamber

- Maintain consistent detector response to changing environmental/experimental conditions by adjusting CDC HV
- Produce calibration constants during data taking

Input Features

- Data extracted from Experimental Physics Industrial Controls System (EPICS)
- Initial input features generated from:
 - -Atmospheric pressure
 - Gas temperature
 - Current drawn from CDC HV boards
- Readily available during the experiment

Production data from 2021 Run Period

- Gaussian process: probability distribution over possible functions that fit a set of points
- Suited to small data set
- Provides uncertainty quantification
 - Important for creating trustworthy AI
- Very fast training and inference
 - 100 iterations took 84 seconds to train on 4 x86_64
 CPUs with 1 GB RAM
 - Inference takes 3 ms

- Utilize HV scan data from past experiments in Hall D
- Recommendation obtained from fit to HV as function of peak amplitude relative to that at 2125 V

CDC gain relative to that for standard HV

Cosmics Test Setup

- Goals:
 - Test drive the AIEC software
 - Demonstrate the CDC gain is stable
- Split CDC in half:
 - -One side set to 2130 V
 - Other side set to HV recommended by the AI
- Fully automated
 - EPICS queried every minute, HV adjusted every 5 min.
 - HV allowed to vary between 2110 and 2150 V
 - -All information, activity logged in database
 - Remote monitoring

Schematic of downstream view of CDC, with straws HV control status indicated

- Compare MPV (Peak height, ADC units) values during each run for both sides of CDC
- Peak heights from AI-tuned side of CDC show dramatic reduction in pressure dependence compared to constant HV

ML System During Production Running

- Adjust HV setting at run boundaries (~2h of data taking)
- Implemented pressure alarm to notify shift takers of significant pressure changes since the start of run
- Interface with shift takers to monitor system
- Improving robustness:
 - How to respond to inferences that have high uncertainty?
 - How to respond to out-of-domain inferences?
 - How to respond to out-of-bounds HV recommendation?

- Exploring ML for calibrations control for:
 - -GlueX FDC (Forward Drift Chamber)
 - Similar gain calibration to CDC
 - GlueX BCAL (Barrel Calorimeter)
 - Pedestal values fluctuate with crate temperature, requires manual adjustment of baseline
 - GlueX TOF (Time-of-Flight)
 - CLAS12 ECAL PMT Gain (Calorimeter in Hall B)

Proof of concept

Demonstrated autonomous control of CDC

Robustness

• Making further improvements to utilize uncertainty, appropriate control for rare out-of-domain inferences

Gain stabilization

 CDC chamber gain was stabilized even with changing environmental conditions

Applications to other detectors

Potential to make predictions for multiple detectors at once

Reduce computing resources

 Predictions generated in ~3 ms vs. days with traditional method

Backup slides

Cosmics Test Results

U.S. DEPARTMENT OF

Office of

Science

Cosmics Test Results

