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✦ The correct location for the ML on the FPGA 
filter is called "FEP" in this figure.

✦ This gives us a chance to reduce traffic earlier.

✦ Allows us to touch physics: ML brings 
intelligence to L1.

✦ However, it is now unclear how far we can go 
with physics at the FPGA.

✦ Initially, we can start in pass-through mode.

✦ Then we can add background rejection.

✦ Later we can add filtering processes with the 
largest cross section.

✦ In case of problems with output traffic, we can 
add a  selector for low cross section processes.

✦ The ML-on-FPGA solution complements the 
purely computer-based solution and mitigates 
DAQ performance risks.
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GEMTRD/emCAL test  setup  data  flow

Images from the Internet are for illustration of scale only.
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Beam setup at JLab Hall-D

• Tests were carried out using electrons with an energy of 3-6 GeV, produced in the 
converter of a pair spectrometer at the upstream of  GlueX  detector.
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GEM-TRD  prototype 
• A test module was built at the University of Virginia
• The prototype of GEMTRD/T module has a size of 10 cm × 10 cm with 

a corresponding to a total of 512 channels for X/Y coordinates. 
• The readout is based on flash ADC system developed at JLAB 

(fADC125)  @125 MHz sampling.

• GEM-TRD provides e/hadron separation and tracking
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GEMTRD clusters on the track
GEM-TRD can work as micro TPC, providing 3D track segments
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GEMTRD offline analysis

• For data analysis we used a neural network library provided  by  root /TMVA package :  
MultiLayerPerceptron (MLP) 
• All data was divided into 2 samples:  training and test samples
• Top right plot shows neural network output for single module:

Ø Red - electrons with radiator
Ø Blue – electrons without radiator
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DNN  in FPGA  for GEMTRD  as  PID  

• Using HLS significantly  decreases development time. (at the cost of lower efficiency  of use of FPGA resources)

TRD 
ML IP

DSP utilization 21%
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GEMTRD  tracks 

50- 0 50 100 150 200
 x strips

40

60

80

100

120

140

160

180

 d
rif

t t
im

e

0

500

1000

1500

2000

2500

3000

3500

4000
GEM TRD tracks

• In a real experiment, GEMTRD will have 
multiple tracks.

• So we also need an pattern recognition 
algorithm in the FPGA

• As well as track fitting.
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GEMTRD FPGA processing test board

DNN  PID  module Pattern recognition DNN  track fit 
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DNN for GEMTRD  Track fit

• Tested solutions based on DNN and LSTM for track fitting.
• LSTM shows better performance but is not yet fully supported in HLS4ML.
• We are currently using a conventional clustering and pattern recognition algorithms. 

They work slowly and the execution time depends on the number of hits.
• We are currently working on an alternative pattern recognition solution based on a 

Graph Neural Network (GNN).
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Track reconstruction example

JAVIER DUARTE, OCTOBER 21, 2020 IRIS-HEP MEETING 
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Graph construction.

arXiv:2012.01249v2 [hep-ph] 7 Dec 2020 Javier Duarte 

q A complete graph on N vertices contains N(N - 1)/2 edges.
q This will require a lot of resources which are limited in FPGA. 
q To keep resources under control, we can construct the graph for a specific geometry 

and limit the minimum particle momentum.
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Existing GNN tracking projects

q TrackML Dataset 
Public dataset hosted on Kaggle for particle tracking: 

https://www.kaggle.com/c/trackml-particle-identification

q A working GNN implementation available here:
Ø https://github.com/vesal-rm/hls4ml/tree/graph_pipeline/example-

prjs/graph/gnn_simple/
Ø Vesal Razavimaleki , IRIS-HEP Fellows Presentation September 28, 20 

q HEP advanced tracking algorithms at the exascale
(Project Exa.TrkX)

q https://exatrkx.github.io/

So we decided to start by evaluating a working solution.

https://www.kaggle.com/c/trackml-particle-identification
https://github.com/vesal-rm/hls4ml/tree/graph_pipeline/example-prjs/graph/gnn_simple/
https://exatrkx.github.io/
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GNN FPGA Synthesis
• 122 nodes x 3 features
• 148 edges x 4 features
• ~ 5 μs latency
• Still working on the interface

Here is the result of the synthesis. :
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GNN for tracking and high-granularity calorimeters

“Learning representations of irregular particle-detector geometry with distance-weighted graph networks”
arXiv:1902.07987v2 [physics.data-an] 24 Jul 2019 



Calorimeter parameters reconstruction
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• Convolutional VAE as a backbone
• Modules deposits as inputs
• Per cluster output of multiple values:
• Energy, e/ π, coordinates, features 

By Dmitry Romanov
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Developing ethernet interface

By Cody Dickover • Currently we using Microblaze setup for tests.
• For the beam test we need high speed interface to FADC.
• The design substitutes the generic axis payload FIFO for a bus interface 

that allows for addressing register space for read/write and event building.
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GEMTRD proposal for the GlueX experiment
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Outlook
• An FPGA-based Neural Network application would offer online event preprocessing  and allow for data reduction 

based on physics at the early stage of data processing.
• The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.
• FPGA provides extremely low-latency neural-network inference on the order of 100 nanoseconds. 
• Open-source hls4ml software tool with Xilinx® Vivado® High Level Synthesis (HLS)  accelerates machine learning neural 

network algorithm development.

• The ultimate goal is to build  a real-time event filter based on physics signatures.
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Backup
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Motivation 
• The growing computational power of modern FPGA boards allows us to add more sophisticated algorithms for real time data processing. 

• Many tasks could be solved using modern Machine Learning (ML) algorithms which are naturally suited for FPGA architectures.

Level 1 works with Regional and sub-detector 
Trigger primitives 

Using ML on FPGA many tasks from Level 2 and/or 
Level 3 can be performed  at Level 1

Fast Machine Learning,10-13 September 2019, Fermilab
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ML in physics
✦ Machine learning methods are widely used and have proven to be very powerful in particle physics.

✦ Although the methods of machine learning and artificial intelligence are developed by many groups and 
have a lot in common, nevertheless, the hardware used and performance is different:

1) CPU only (farm)
2) CPU and GPU accelerator
3) CPU and FPGA accelerator
4) pure FPGA

✦ While the large numerical processing capability of GPUs is attractive, these technologies are optimized for 
high throughput, not low latency. 

✦ FPGA-based trigger and data acquisition systems have extremely low, sub-microsecond latency 
requirements that are unique to particle physics. 

✦ Definitely FPGA can work on a computer farm as an ML accelerator, but the internal FPGA performance 
will be degraded due to slow I/O through the computer and the PCIe bus. Not to mention the latency, 
which will increase by 2-3 orders of magnitude.

✦ Therefore, the most effective would be the use of ML-FPGA directly between the front-end stream and a 
computer farm, on which it is already more efficient to use the CPU and GPU for ML/AI.
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FPGA test board for ML 
• At an early stage in this project, as hardware to test ML algorithms on FPGA , we use a standard Xilinx 

evaluation boards rather than developing a customized FPGA board. These boards have functions and 
interfaces sufficient for proof of principle of ML-FPGA. 

• The  Xilinx evaluation board includes the Xilinx XCVU9P and  6,840 DSP slices. Each includes a hardwired 
optimized multiply unit and collectively offers a peak theoretical performance in excess of 1 Tera 
multiplications per second.

• Second, the internal organization can be optimized to the specific computational problem. The internal data 
processing architecture can support deep computational pipelines offering high throughputs. 

• Third, the FPGA supports high speed I/O interfaces including  Ethernet and 180 high speed transceivers that 
can operate in excess of 30 Gbps.

Xilinx Virtex® UltraScale+™
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Optimization with hls4ml package
• A  package hls4ml is developed based on High-Level Synthesis (HLS) to build machine learning models in FPGAs. 

article: J. Duarte et al 2018 JINST 13 P07027 

https://fastmachinelearning.org/hls4ml/
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GEMTRD  PID  network optimization
Full size neural network, 

accuracy-optimized.

Latency = 75ns

DSP utilization 10%

Size-optimized neural network

Latency = 85ns

DSP utilization 2%
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Compute Node (PXD,Belle II) 

• The pixel detector of Belle II with its ~ 8 million channels will 
deliver data at rate of 22 Gbytes/s  for a trigger rate of 30 kHz

• A hardware platform capable of processing this amount of 
data is the ATCA based Compute Node. (Advanced 
Telecommunications Computing Architecture).

• A single ATCA crate can host up to 14 boards interconnected 
via a full mesh backplane.

• Each AMC board is equipped with 4  Xilinx Virtex-5 FX70T 
FPGA.
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ADC based DAQ for PANDA STT

6. June 2018 Seite 
29

• 160 Amplifiers;
• 5 connectors for 32-

pins samtec cables

Level 0  Open VPX Crate
ADC based DAQ for PANDA STT (one of approaches):
• 160 channels (shaping, sampling and processing) 

per payload slot, 14 payload slots+2 controllers;
• totally 2200 channels per crate;
• time sorted output data stream (arrival time, energy,...)
• noise rejection, pile up resolution, base line correction, ..

Powerful Backplane 
up to 670 GBs

L. Jokhovets, P Kulessa ..

• 40 4-channel ADCs 
(configurable up to 1 GSPS);

• Single Virtex7 FPGA

✦ All information from 
the straw tube tracker 
is processed in one unit.

✦ Allows to build a 
complete STT event.

✦ This unit can also be 
used for calorimeters 
readout and processing.
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Unified hardware solution (ATCA or OpenVPX)
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