

ML on FPGA for real-time particle identification

Sergey Furletov Jefferson Lab

<u>Team :</u>

F. Barbosa, L. Belfore (ODU), C. Dickover, C. Fanelli (MIT), Y. Furletova,

S. Furletov, L. Jokhovets (Jülich Research Centre, Germany),

D. Lawrence, D. Romanov

Workshop on Streaming readout X

19 May 2022

EIC readout as motivation

- ♦ The correct location for the ML on the FPGA filter is called "FEP" in this figure.
- ★ This gives us a chance to reduce traffic earlier.
- Allows us to touch physics: ML brings intelligence to L1.
- ✦ However, it is now unclear how far we can go with physics at the FPGA.
- ♦ Initially, we can start in pass-through mode.
- Then we can add background rejection.
- ◆ Later we can add filtering processes with the largest cross section.
- ♦ In case of problems with output traffic, we can add a selector for low cross section processes.
- ◆ The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.

GEMTRD/emCAL test setup data flow

Level 1 Level 3 Level 0

Images from the Internet are for illustration of scale only.

Beam setup at JLab Hall-D

• Tests were carried out using electrons with an energy of 3-6 GeV, produced in the converter of a pair spectrometer at the upstream of GlueX detector.

GEMTRD prototype

GEM-TRD prototype

- A test module was built at the University of Virginia
- The prototype of GEMTRD/T module has a size of 10 cm × 10 cm with a corresponding to a total of 512 channels for X/Y coordinates.
- The readout is based on flash ADC system developed at JLAB (fADC125) @125 MHz sampling.
- GEM-TRD provides e/hadron separation and tracking

GEMTRD clusters on the track

GEM-TRD can work as micro TPC, providing 3D track segments

GEMTRD offline analysis

- For data analysis we used a neural network library provided by root /TMVA package : MultiLayerPerceptron (MLP)
- All data was divided into 2 samples: training and test samples
- Top right plot shows neural network output for single module:
 - > Red electrons with radiator
 - > Blue electrons without radiator

DNN in FPGA for GEMTRD as PID

• Using HLS significantly decreases development time. (at the cost of lower efficiency of use of FPGA resources)

GEMTRD tracks

- In a real experiment, GEMTRD will have multiple tracks.
- So we also need an pattern recognition algorithm in the FPGA
- As well as track fitting.

GEMTRD tracks

- In a real experiment, GEMTRD will have multiple tracks.
- So we also need an pattern recognition algorithm in the FPGA
- As well as track fitting.

GEMTRD FPGA processing test board

DNN for GEMTRD Track fit

- Tested solutions based on DNN and LSTM for track fitting.
- LSTM shows better performance but is not yet fully supported in HLS4ML.
- We are currently using a conventional clustering and pattern recognition algorithms. They work slowly and the execution time depends on the number of hits.
- We are currently working on an alternative pattern recognition solution based on a Graph Neural Network (GNN).

== Performance Estimates

+ Timing (ns):

	Summary			+
İ	Clock	Target	Estimated	Uncertainty
•				0.62

- + Latency (clock cycles):
 - * Summary:

Late	ency	Inte	erval max	+ Pipeline Type		
18	18	4	4	function		

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP Expression FIFO Instance Memory Multiplexer Register	- - 48 - -	- - - 1418 - - -	- 0 - 26905 - - 4239	- 6 - 182279 - 81	- - - - -
+ Total	48	1418	31144	182366	0
Available SLR	1440	2280	788160	394080	320
Utilization SLR (%)	3	62	3	46	0
Available	4320	6840	2364480	1182240	960
Utilization (%)	1	20	1	15	0

Track reconstruction example

JAVIER DUARTE, OCTOBER 21, 2020 IRIS-HEP MEETING

Graph construction.

- \square A complete graph on N vertices contains N(N 1)/2 edges.
- ☐ This will require a lot of resources which are limited in FPGA.
- ☐ To keep resources under control, we can construct the graph for a specific geometry and limit the minimum particle momentum.

Javier Duarte arXiv:2012.01249v2 [hep-ph] 7 Dec 2020

Existing GNN tracking projects

■ TrackML Dataset

Public dataset hosted on Kaggle for particle tracking: https://www.kaggle.com/c/trackml-particle-identification

- ☐ HEP advanced tracking algorithms at the exascale (Project Exa.TrkX)
- □ https://exatrkx.github.io/

- ☐ A working GNN implementation available here:
 - https://github.com/vesal-rm/hls4ml/tree/graph_pipeline/example-prjs/graph/gnn_simple/
 - > Vesal Razavimaleki , IRIS-HEP Fellows Presentation September 28, 20

So we decided to start by evaluating a working solution.

GNN FPGA Synthesis

Here is the result of the synthesis. :

General Information Sun May 15 20:48:02 2022 Date: Version: 2019.1 (Build 2552052 on Fri May 24 15:28:33 MDT 2019) Project: solution rf1 Solution: Product family: virtexuplus Target device: xcvu9p-flga2104-2L-e **Performance Estimates** □ Timing (ns) Summary Clock Target Estimated Uncertainty ap_clk 5.00 4.864 Latency (clock cycles) Summary Latency Interval min max min max Type 1006 1006 1006 1006 none Detail ■ Instance **■ Loop Utilization Estimates** □ Summary FIFO Instance

Multiplexer Register

Available

Available SLR

Utilization (%)

Utilization SLR (%)

- 122 nodes x 3 features
- 148 edges x 4 features
- ~ 5 μs latency
- Still working on the interface

22339

684023644801182240

2280 788160 394080

72

GNN for tracking and high-granularity calorimeters

"Learning representations of irregular particle-detector geometry with distance-weighted graph networks" arXiv:1902.07987v2 [physics.data-an] 24 Jul 2019

GravNet

GarNet

S.R. Qasim, J.K, Y. Iiyama, M Pierini arXiv:1902.07987, EPJC

Calorimeter parameters reconstruction

By Dmitry Romanov

- Convolutional VAE as a backbone
- Modules deposits as inputs
- Per cluster output of multiple values:
- Energy, e/ π , coordinates, features

Examples of events with e and π^- showers and μ^- passing through.

Developing ethernet interface

GEMTRD proposal for the GlueX experiment

FIG. 2: Front view of the GEM-TRD detector placed at the face of the solenoid magnet.

FIG. 16: Front view of the GEM-TRD large-scale prototype that has $696 \times 528 \text{ mm}^2$ sensitive area.

Outlook

- An FPGA-based Neural Network application would offer online event preprocessing and allow for data reduction
 based on physics at the early stage of data processing.
- The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.
- FPGA provides extremely low-latency neural-network inference on the order of 100 nanoseconds.
- Open-source hls4ml software tool with Xilinx® Vivado® High Level Synthesis (HLS) accelerates machine learning neural network algorithm development.
- The ultimate goal is to build a real-time event filter based on physics signatures.

Figure 2.1: Feynman diagrams of the Quark Parton Model, QCD-Compton and Boson Gluon Fusion processes in NC DIS.

Published in 2007

Measurement of multijet events at low \$x_{Bj}\$ and low \$Q^2\$ with the ZEUS detector at HERA

T. Gosau

Backup

Motivation

- The growing computational power of modern FPGA boards allows us to add more sophisticated algorithms for real time data processing.
- Many tasks could be solved using modern Machine Learning (ML) algorithms which are naturally suited for FPGA architectures.

Level 1 works with Regional and sub-detector **Trigger primitives**

Using ML on FPGA many tasks from Level 2 and/or Level 3 can be performed at Level 1

Fast Machine Learning, 10-13 September 2019, Fermilab

5/19/22 Sergey Furletov

ML in physics

- ◆ Machine learning methods are widely used and have proven to be very powerful in particle physics.
- ◆ Although the methods of machine learning and artificial intelligence are developed by many groups and have a lot in common, nevertheless, the hardware used and performance is different:
 - 1) CPU only (farm)
 - 2) CPU and GPU accelerator
 - 3) CPU and FPGA accelerator
 - 4) pure FPGA
- ♦ While the large numerical processing capability of GPUs is attractive, these technologies are optimized for high throughput, not low latency.
- ◆ FPGA-based trigger and data acquisition systems have extremely low, sub-microsecond latency requirements that are unique to particle physics.
- ◆ Definitely FPGA can work on a computer farm as an ML accelerator, but the internal FPGA performance will be degraded due to slow I/O through the computer and the PCIe bus. Not to mention the latency, which will increase by 2-3 orders of magnitude.
- ◆ Therefore, the most effective would be the use of ML-FPGA directly between the front-end stream and a computer farm, on which it is already more efficient to use the CPU and GPU for ML/AI.

FPGA test board for ML

- At an early stage in this project, as hardware to test ML algorithms on FPGA, we use a standard Xilinx evaluation boards rather than developing a customized FPGA board. These boards have functions and interfaces sufficient for proof of principle of ML-FPGA.
- The Xilinx evaluation board includes the Xilinx XCVU9P and 6,840 DSP slices. Each includes a hardwired optimized multiply unit and collectively offers a peak theoretical performance in excess of 1 Tera multiplications per second.
- Second, the internal organization can be optimized to the specific computational problem. The internal data
 processing architecture can support deep computational pipelines offering high throughputs.
- Third, the FPGA supports high speed I/O interfaces including Ethernet and 180 high speed transceivers that can operate in excess of 30 Gbps.

 Featuring the Virtex® UltraScale+** XCVU9P-L2FLGA2104E FPGA

Xilinx Virtex[®] UltraScale+™

Optimization with hls4ml package

A package hls4ml is developed based on High-Level Synthesis (HLS) to build machine learning models in FPGAs.

GEMTRD PID network optimization

Full size neural network, accuracy-optimized.

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP Expression	- - -	2	_ 0	- 24	- - -
FIFO Instance Memory Multiplexer Register	- 19 2 -	692 - -		16446 0 36 -	- - - -
Total	21	694	5269	16506	0
Available SLR	1440	2280	788160	394080	320
Utilization SLR (%)	1	30	~0	4	0
Available	4320	6840	2364480	1182240	960
Utilization (%)	~0 ~0	10	~0	 1 +	0

DSP utilization 10%

Size-optimized neural network

~0

~0

4320

7|

6840|

~0

2364480|

2|

1182240|

DSP utilization 2%

|Utilization SLR (%)

|Available

|Utilization (%)

Compute Node (PXD, Belle II)

- The pixel detector of Belle II with its ~ 8 million channels will deliver data at rate of 22 Gbytes/s for a trigger rate of 30 kHz
- A hardware platform capable of processing this amount of data is the ATCA based Compute Node. (Advanced Telecommunications Computing Architecture).
- A single ATCA crate can host up to 14 boards interconnected via a full mesh backplane.
- Each AMC board is equipped with 4 Xilinx Virtex-5 FX70T FPGA.

ADC based DAQ for PANDA STT

Level 0 Open VPX Crate

ADC based DAQ for PANDA STT (one of approaches):

- 160 channels (shaping, sampling and processing) per payload slot, 14 payload slots+2 controllers;
- totally 2200 channels per crate;
- time sorted output data stream (arrival time, energy,...)
- noise rejection, pile up resolution, base line correction, ...

Single Virtex7 FPGA

- 160 Amplifiers;
- 5 connectors for 32pins samtec cables

- All information from the straw tube tracker is processed in one unit.
- Allows to build a complete STT event.
- This unit can also be used for calorimeters readout and processing.

Powerful Backplane up to 670 GBs

Unified hardware solution (ATCA or OpenVPX)

