Using @MQ to implement
Communication Middleware

Wojciech Sliwinski, BE-CSS, CERN, Geneva

Wojciech.Sliwinski@cern.ch “Streaming Readout X” workshop, Jefferson Lab
https://www.linkedin.com/in/wojciechsliwinski/ 18" May 2022

Based on talk of Joel Lauener @ ICALEPCS 2017, Barcelona

CE/RW
\

N/ S

OMQ

Networking library & concurrency framework

Simple socket style API

Supports inter-thread, inter-process and inter-host
Provides several socket patterns

Fast & scalable

Open source (currently LGPLv3 but moving to MPLV2)

A. Dworak et al., "Middleware trends and market leaders 2011", ICALEPCS 2011
http://cern.ch/go/G9RC

CE/RW
\

N/ S

RDA - Remote Device Access
RDA2

s S - ;
L e S ey | 4 .
4 - g § - \ P o
e Saddh s 43 -, L > N L . 5

https://www.synthesis.co.za/agile-software-architecture-super-agile/ Slim Thug f/ Paul Wall "Top Drop" (2009)

RDAS3 architectural overview

- Transport Layer User Code
- Abstraction of underlying network library —
- Business Layer RD;\B—I?:u_si_r;e;s_Ldayer
- Agnostic of network library RDA3 Transport Layer
- Implements the device-property model " " ZeroMQ__|
Request/Reply: Get (read) and Set (write) Network
Publish/Subscribe

N. Trofimov et al., “Remote Device Access in the new CERN Accelerator Controls middleware”,
ICALEPCS 2001

http://cern.ch/go/9MSk

Client-server communication

4 Client

~

— RDA3
— User
— ZeroMQ

-

7?7

Server

ZeroMQ DEALER/ROUTER pattern

DEALER

DEALER ROUTER

DEALER

Client-server communication

4 Client

~

— RDA3
— User
— ZeroMQ

-

DEALER

ROUTER

Server

— RDA3
— User

— ZeroMQ

Transport layer

Server

DEALER |[€——>| ROUTER

Transport

4 Client

Transport layer

4 Client

— RDA3
— User
— ZeroMQ

DEALER

Dispatcher
ROUTER Thread

Server

— RDA3

User layer “onawa

|
I
: User :
| Thread(s) |
I I
I I

I
| |
I
: User : |
| Thread (s) | :
I I
| __] |
|| Dispatcher Dispatcher
: DEALER |[€——>| ROUTER
I
I
I
I
I
I
I

— RDA3

User layer “onawa

I

| |
| k)

| lk — : User :
: | Thread(s) |
| | |
|

Dispatcher Dispatcher

|
|
|
| : 2?7 !
| User | S
| [Thread (s)] | :
| | |
|
|
|
|
|
|
|
|
|
|

ZeroMQ PUSH/PULL pattern

PUSH PUSH PUSH

PULL

— RDA3

User layer “onawa

|I User Code | : Transport

Thread (s)

[User] PUSH fee—3[PULL

|
|
PULL(—PUSH[User] :
|
|
|

Thread(s)
Dispatcher Dispatcher
Thread DEALER |€——| ROUTER Thread

I
I
I
I
I
I
I
I
I
I
I
I
I

Business layer

: Transport

Thread (s)

PULL

[User] PUSH [

— RDA3

Dispatcher
Thread

DEALER

I
I
I
I
I
I
I
I
I
I
I
I
I

— User
— ZeroMQ
(
Server
:_ Transport _: \User Code }
L I
|
| PULL |€—— PUSH User :
: l , Thread(s) |
| | | |
| I o ___
COUTER Dispatcher : T
Thread |, : Business :
| | | i
| | | Thread Pool |
| |
| I IS :
S |]
\

Business layer

Thread (s)

[User] PUSH fee—3[PULL

— RDA3

DEALER

— User
— ZeroMQ

4 Server
| Transport _: \User Code }
I \ |

|
| PULL |€—— PUSH User :
: l , Thread(s) |
| | | |
| r - _____ - _____41

Dispatcher : T

™| ... I ——m——_—
rov Thread |, hon | Business I
I
| it X |

|
| | | [Th read Pool |

|
| | |
| | S :
o |]

_

— RDA3

Business layer e

[User] PUSH fee—3[PULL

| :
: PULL |€—— PUSH [User] :
| :

I
]

|

I

| Thread (s) : : i Thread(s)

I | | | I

! ___ | I . ___

______ T_ B I P S| rouTer Dispatcher : T

———————————— DEALER ROUTE ——

pusiness | | o7 ™read)i Caback BUsiness |

| | | | | it A |
| | | |

| [Th read Pool k - Callback_ _ - | | | | [Th read Pool |

I | | | I |
| |

| & | | | & |

\ L | L | \

— RDA3

Request/Reply (e.g. Get call) e

.) éa)

Client Server
\User Code] :_ Transport | :_ Transport | \User Code]
| 1 | | 1 |
: User PUSH [PULL : I PULL |€————— PUSH User :
| Thread (s) request | : , Thread(s) |
! !

| | request | request | | |

T
|
————— M Gallback ~ | (Dispatch
|| Dispatcher
______ N Wi, DEALER |€ 3| ROUTER
|
|
|

| | |
! ! | | % !
| reply | reply | reply | / I request regpbst |
: [Th read Pool k - Callback_ _ - : : ey : 7 : [Th rgapdegool :
| | repl ! !
! N ! Py : | : PULL PUSH | !
| | | | | reply |
] Lo e — | L e — |]

— RDA3

Publish/Subscribe: Sending a notification
. — ZeroMQ
.) é
Client Server
\User Code] :_ Transport | :_ Transport | \User Code]
| 1 | | 1 |
: User PUSH fe———>| PULL : I PULL PUSH User :
| Thread (s) | | | __Inotification L, Thread(s) |
| ifinati L . |
| | | notification L otificatign | notification | | |
______ R ——— : : =
callback | [Dispatcher Dispatcher |!
—————— 11— DEALER [€——>| ROUTER I ——
Business | | ™read)i Calback BUsiness |
o			L - Calback__y	
notification		!	!	
Thread Pool K- _Callback_ _ :	: ! Thread Pool			
" notification				
: N : | : | PULL | e PUSH | :
] o | LT i]
J \

Our experience with OMQ
P comorgooutomow

Proposed architecture proved to be efficient

Solid, stable, high quality networking library

Outstanding scalability & reliability

Async, non-blocking communication is a “game changer”

Portfolio of different socket communication patterns

Active & responsive community

Excellent online documentation

Lack of built-in heart-beating mechanism for
connection management (2013)

ZMQ Socket's HWM (High-Water-Mark) policy for max.
queue size based on message count not sufficient. We
also need max. queue size in bytes.

Lack of backpressure mechanism for publishers in
case of slow-consumers

Lack of timeout control as communication is async

Single-thread access to ZMQ socket for dispatching
messages

Java: JNI (jzmq) & pure-Java (jeromq) not equal
feature-wise

If we developed RDAS3 again today ...

ZeroMQ would be still one of our top choices

However, we would like to use “web friendly” protocol
HTTP/2 for transport
Non-blocking communication
Bi-directional streaming (e.g. WebSocket, RSocket)
Cluster/Cloud friendly (Kubernetes, e.g. gRPC)

Replace in-house serialization (text, binary) with an industry standard
Protocol Buffers, Apache Avro, MessagePack, ...

Conclusions

ZeroMQ is used in operation for all CERN accelerators for 7 years

. Very good operational experience
. Outstanding scalability & reliability in peer-to-peer communication
. Missing Cluster/Cloud capabilities (not ready for Kubernetes)

RDA3 (based on ZeroMQ) was developed in collaboration with GSI
. Already used @ GSI; will be used for the new FAIR complex

Migrating to ZeroMQ was the right decision

Development process was a key success factor
. Scrum-like, short iterations, peer reviews, test early, CI/CD, deliver often

Wojciech.Sliwinski@cern.ch
https://cmwdoc.web.cern.ch/

