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OMQ

Networking library & concurrency framework

Simple socket style API

Supports inter-thread, inter-process and inter-host
Provides several socket patterns

Fast & scalable

Open source (currently LGPLv3 but moving to MPLV2)

A. Dworak et al., "Middleware trends and market leaders 2011", ICALEPCS 2011
http://cern.ch/go/G9RC
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RDA - Remote Device Access
RDA2
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https://www.synthesis.co.za/agile-software-architecture-super-agile/ Slim Thug f/ Paul Wall "Top Drop" (2009)




RDAS3 architectural overview

- Transport Layer User Code
- Abstraction of underlying network library —
- Business Layer RD;\B—I?:u_si_r;e;s_Ldayer
- Agnostic of network library RDA3 Transport Layer
- Implements the device-property model " " ZeroMQ__|
Request/Reply: Get (read) and Set (write) Network
Publish/Subscribe

N. Trofimov et al., “Remote Device Access in the new CERN Accelerator Controls middleware”,
ICALEPCS 2001

http://cern.ch/go/9MSk




Client-server communication
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ZeroMQ DEALER/ROUTER pattern
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Transport layer
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ZeroMQ PUSH/PULL pattern
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Business layer
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Business layer

Thread (s)

[ User ] PUSH fee—3[ PULL

— RDA3

DEALER

— User
— ZeroMQ

4 Server
| Transport _: \User Code }
I \ |

|
| PULL |€—— PUSH User :
: l , Thread(s) |
| | | |
| r - _____ - _____41

Dispatcher : T

™| ... I ——m——_—
rov Thread |, hon | Business I
I
| it X |

|
| | | [Th read Pool |

|
| | |
| | S :
o | ]

\_




— RDA3

Business layer e

[ User ] PUSH fee—3[ PULL

| :
: PULL |€—— PUSH [ User ] :
| :

I
]

|

I

| Thread (s) : : i Thread(s)

I | | | I

! ___ | I . ___

______ T_ B I P S| rouTer Dispatcher : T

———————————— DEALER ROUTE ——

pusiness | | o7 ™read )i Caback  BUsiness |

| | | | | it A |
| | | |

| [Th read Pool k - Callback_ _ - | | | | [Th read Pool |

I | | | I |
| |

| & | | | & |

\ L | L | \




— RDA3
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Our experience with OMQ
P comorgooutomow

Proposed architecture proved to be efficient

Solid, stable, high quality networking library

Outstanding scalability & reliability

Async, non-blocking communication is a “game changer”

Portfolio of different socket communication patterns

Active & responsive community

Excellent online documentation

Lack of built-in heart-beating mechanism for
connection management (2013)

ZMQ Socket's HWM (High-Water-Mark) policy for max.
queue size based on message count not sufficient. We
also need max. queue size in bytes.

Lack of backpressure mechanism for publishers in
case of slow-consumers

Lack of timeout control as communication is async

Single-thread access to ZMQ socket for dispatching
messages

Java: JNI (jzmq) & pure-Java (jeromq) not equal
feature-wise




If we developed RDAS3 again today ...

ZeroMQ would be still one of our top choices

However, we would like to use “web friendly” protocol
HTTP/2 for transport
Non-blocking communication
Bi-directional streaming (e.g. WebSocket, RSocket)
Cluster/Cloud friendly (Kubernetes, e.g. gRPC)

Replace in-house serialization (text, binary) with an industry standard
Protocol Buffers, Apache Avro, MessagePack, ...




Conclusions

ZeroMQ is used in operation for all CERN accelerators for 7 years

. Very good operational experience
. Outstanding scalability & reliability in peer-to-peer communication
. Missing Cluster/Cloud capabilities (not ready for Kubernetes)

RDA3 (based on ZeroMQ) was developed in collaboration with GSI
. Already used @ GSI; will be used for the new FAIR complex

Migrating to ZeroMQ was the right decision

Development process was a key success factor
. Scrum-like, short iterations, peer reviews, test early, CI/CD, deliver often

Wojciech.Sliwinski@cern.ch
https://cmwdoc.web.cern.ch/




