
PODIO
Streaming Readout X
18.5.2022

Benedikt Hegner
CERN

Outline

2

• Motivation and Context

• Driving Design Considerations

• Explanation of the Current Implementation

• Open work and future steps

A little disclaimer:

Given the kind of workshop this presentation goes more into design choices and details rather

than giving a simple introduction into the end-user interface.

Why a new data model library?

3

● LHC experiments show that we overdid on inheritance and polymorphism

○ State of the art when the code was written!

○ Expensive virtual calls and memory operations

● Sometimes deep and absurd object hierarchies

○ A “CaloTower” as a “Particle”

● Many physicists do not feel productive in the existing data models…

… and leave the official frameworks behind as soon as possible

● During the last 15 years technology evolved a lot!

⇒ Needed to rethink what we did

Driving Design Considerations

4

1. Simple Memory Model

a. Concrete data are contained within plain-old-data structures (PODs)

b. Provide vectorization friendly (or at least not unfriendly) interfaces

2. Simple Class Hierarchies

a. Wherever possible use concrete types

b. Favour composition over inheritance

3. Simple interfaces on user side

a. In particular avoid ownership problems!

4. Employ code generation

a. Quick turn-around for improvements on back-end

b. Easy creation of new types

5. Support for both C++ and Python

6. Thread-safety

7. Use ROOT as first choice for I/O

a. Keep transient to persistent layer as thin as possible

Simple Memory Model

5

Interlude - what is a POD?

6

A POD combines two concepts

• Support for static initialization (trivial class)

• They have standard layout

• No virtual functions and no virtual base classes

• Same access control for all non-static data members

• …

In short - a POD is closer to a classical C struct than a C++ object

A POD is good for memory layout and memory operations

⇒ PODIO !

Separation of Concerns

Using PODs is a good idea…

… but they are a little bit too dumb to support all what is needed.

Need smart layers on top of the PODs to

• Deal with object ownership

• Allow referencing between objects

• Deal with non-trivial I/O operations

Whenever performance is a concern - leave possibility to access the bare PODs

7

The PODIO layers

1. User visible classes (e.g. Hit). These act as transparent references to the underlying data

2. A transient object knowing about all the data for a certain physics object, including

inter-object references (e.g. HitObject)

3. POD holding the persistent object information (e.g. HitData)

and

4. A Collection containing the userʼs objects (e.g. HitCollection)

8

Simple Interfaces

9

Supported Syntax

Objects and collections can be created via factories, ensuring proper ownership:

auto& hits = store.create<HitCollection>("hits")
auto hit1 = hits.create(1.4,2.4,3.7,4.2); // init with values
auto hit2 = hits.create(); // default-construct object
hit2.energy(42.23);

Objects can be created in the free - if not attached to a collection, they are automatically

garbage collected:

auto hit1 = Hit();
auto hit2 = Hit();
...
hits.push_back(hit1);
...
<automatic deletion of hit2>

Whenever performance is a concern - leave possibility to access the bare PODs

10

Object Ownership

Unclear object ownership and memory leaks are a common problem

⇒ Make it as hard as possible to do mistakes

In PODIO there are two stages in object ownership

1. Before registering data into an event store ⇒ reference counted

2. After adding data into event store ⇒ ownership up to event store

Additional costs on object creation time and no costs later

11

Relations between Objects

Providing relations between objects is important. Relations can be

1. Internal: m mother = particle.mother()

2. External: mother = mother_daughter_relations[particle]

Providing only external ones is puristic, providing internal ones easier to use

PODIO allows both, obviously.

12

Relations between Objects

N-to-M relations look like this:

auto& hits = store.create<HitCollection>("hits");
auto hit1 = hits.create();
auto hit2 = hits.create();

auto& clusters = store.create<ClusterCollection>("clusters");
auto cluster = clusters.create();

cluster.addHit(hit1);
cluster.addHit(hit2);

<...>

auto hit = cluster.Hits(<aNumber>);

Using smart references avoids confusion when to pass values, pointers, etc

13

Const correctness on smart references

It is easy to strip constness from a smart reference, e.g. by doing implicit copies

auto myRef instead of const auto& myRef
 const auto myRef

Need to preserve constness state within the smart reference by either:

1. Having two classes (Ref and MutableRef) - compile time!
2. Having an internal flag (a la isMutable) - runtime!

In the prototyping stage we played with both. The first is more puristic, the second more
user-friendly.

⇒ So far we are using the compile-time option

14

Relations - Details

1. Relations are handled outside the PODs
2. The “Object Land” manages the lookup in memory
3. Every object in PODIO is uniquely identified by collectionID + index
4. During I/O ever reference is being replaced by its Object ID

15

Code generation

16

Defining Data Types

In PODIO data model classes are not written manually, but defined in yaml-files

As PODIO encourages composition over inheritance, there are two high-level categories
of definition:

1. Components - can contain any types that allow them to be PODs (including other
components)

2. Classes - can contain the same types as components, but in addition references to
other objects

The PODIO class generator creates the data model from the yaml file

If users make a choice destroying pure PODness, they are notified at data model creation
time

17

Data Model Definition

Simple Members:

RawCalorimeterHit:
 description : “raw calorimeter hit”
 author : “B. Hegner”
 members :

- int cellID // The detector specific (geometrical) cell ID.
- int amplitude // The amplitude of the hit in ADC counts.
- int timeStamp // The time stamp for the hit.

Relation to other objects

SimCalorimeterHit:
 ...
 OneToOneRelations:

- MCParticle particle // The MC particle that caused the hit.
 OneToManyRelations:

- MCParticle daughters // the daughters of this particle
- MCParticle parents // the parents of this particle

18

Thread-safety

19

Thread Safety 1/2

Thread-safety is about states, their change, and parallel executions getting an
inconsistent view on those

⇒ keep the number of states to the bare minimum
⇒ donʼt play with globals

In PODIO there are the following local states

1. The actual data in the PODs
2. The reference counting
3. Whatʼs contained in the whiteboard

And in case of reading/writing the I/O with plenty of local and global states

There are no smart caches and on-demand operations done or triggered by PODIO
itself

20

Thread Safety 2/2

Some of the states can be tackled by protocols/conventions, others by protecting code

1. The actual data in the PODs
⇒ follow a convention, e.g. create once, donʼt change afterwards

2. The reference counting
⇒ using atomics

3. Whiteboard
⇒ users provide their own thread-safe whiteboard

4. Input/output
⇒ Back-end dependent

21

Now time for discussion…

22

