
ALICE
SOFTWARE

FRAMEWORK
FOR RUN 3

Giulio Eulisse - CERN

ALICE - FAIR FRAMEWORK COLLABORATION
➤ Goal: develop and support common software

solutions for the Run3 of the ALICE LHC
experiment and the upcoming experiments at the
Facility for Antiproton and Ion Research in
Europe (FAIR) being built at GSI.

➤ Based on the experiences of ALICE HLT in Run1
/ Run2 and the of the FairRoot framework.

➤ One of the examples of fruitful collaboration on
Software Frameworks & Toolkits in HEP.

➤ I modestly contribute to it as part of the CERN
ALICE Team, in particular to the so called Data
Processing Layer.

2

3

ALICE IN RUN 3: POINT 2

FLP

FLP

EPN

FLP

De
te

ct
or

EPN

EPN

≳3TB/s
(~45GB/s in Run 2)

up to 500GB/s

...

Readout

Synchronous
reconstruction

(data reduction)

On-site
storage

EPN / Grid

...

Asynchronous
reconstruction

(improved conditions)

EPN / Grid

EPN / Grid Permanent
storage

4

up to 100GB/s
(~10GB/s in Run 2)

EPN input data quantum is the
"timeframe": ~11ms of continuous

readout data. ~10GB

EPNEPNEPNEPN

BEAM ON: data reduction BEAM OFF: improved calibration

~80PB
(1PB in Run 2)

200 nodes

250 nodes
with 8xGPUs

per node

SYNCHRONOUS RECONSTRUCTION: GPUS AS FIRST CLASS CITIZENS

5

Synchronous processing requires GPU utilisation for TPC
tracking. One modern GPU replaces 40 CPU cores.
Changing the algorithm gives an additional 20x - 25x
speedup. GPUs provide a 4x total benefit in terms of
cost.

ALICE will use ~250 dual AMD Rome for a total
of 64 cores, each equipped with 8 AMD MI50 32
GB GPUs. 1500 GPUs needed to process @ 50 kHz,
20% margin.

Besides TPC tracking, baseline foresees running most of
ITS tracking on the GPU. 99% of the computing in
synchronous phase already running on the GPU.

Same source code can targeted to support different GPU
middlewares (AMD HIP, nVIDIA CUDA, OpenCL) or
CPU (mostly for debugging and validation).

ASYNCHRONOUS RECONSTRUCTION

6

Follows the PbPb data taking, interleaved with pp. Two
processing cycles per data taking year.

Processing on EPN farm (2/3 CTF volume) and the
Grid (1/3).

Currently over 80% of the CPU - equivalent computing
time running on GPUs. GPU usage is crucial to
effectively use EPN farm when not taking data.

After 2nd cycle CTF will remain only on tape. Any
subsequent cycle will have to wait until LHC LS.

Single persistent analysis object output - Analysis
Object Data. All the analysis will have to be performed
on such data and the associated derived objects.

20 PB of EOS disk cache already benchmarked and
ready for commissioning.

THE BIG PICTURE

7

ALICE O2: SOFTWARE FRAMEWORK IN ONE SLIDE

8

Transport Layer: ALFA / FairMQ1
➤ Standalone processes for deployment flexibility.
➤ Message passing as a parallelism paradigm.
➤ Shared memory backend for reduced memory usage and improved performance.

Data processing happens in separate processes, called devices, exchanging data via a
shared memory backed Message Passing paradigm.

ALFA / FAIRMQ FRAMEWORK: GENERAL IDEA

device1

Shared RAM“message” =
memory location

of input data

“message” =
memory location

of output data device2
“message” =

memory location
of input data

“message” =
memory location

of output data

device3

9

Seamless and homogeneous support for multi-node setups using one of the network
enabled message passing backends, e.g. InfiniBand with RDMA.

device3device1 device2

ALFA / FAIRMQ FRAMEWORK: GENERAL IDEA

10

N
etw

ork

SOFTWARE STACK BEHIND FAIRMQ
➤ Support for multiple message passing OpenSource libraries: ZeroMQ, nanomsg.

➤ In-house developed C++ bindings (FairRootGroup/asiofi) to OFI libfabric for
InfiniBand support.

➤ Adoption of boost::interprocess for the shared memory backend.

➤ Support for multiple message serialisation (or not) protocols. Transport is agnostic
about actual message content, allowing implementor to use their preferred
technology: protobuf, flatbuffers, detector specific, Apache Arrow.

➤ State machine with pluggable support for deployment / control services: DDS, O2
AliECS, PMIx or "standalone".

11

https://github.com/FairRootGroup/asiofi
https://arrow.apache.org
https://pmix.org

ALICE O2: SOFTWARE FRAMEWORK IN ONE SLIDE

12

Transport Layer: ALFA / FairMQ1
➤ Standalone processes for deployment flexibility.
➤ Message passing as a parallelism paradigm.
➤ Shared memory backend for reduced memory usage and improved performance.

ALICE O2: SOFTWARE FRAMEWORK IN ONE SLIDE

Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends:
➤ Simplified, zero-copy format optimised for performance and direct GPU usage. Useful e.g. for

TPC reconstruction on the GPU.
➤ ROOT based serialisation. Useful for QA and final results.
➤ Apache Arrow based. Useful as backend of the analysis ntuples and for integration with other

tools.

13

Transport Layer: ALFA / FairMQ1
➤ Standalone processes for deployment flexibility.
➤ Message passing as a parallelism paradigm.
➤ Shared memory backend for reduced memory usage and improved performance.

O2 DATA MODEL
A timeframe is a collection of (header, payload) pairs. Headers defines the type of data. Different
header types can be stacked to store extra metadata (mimicking a Type hierarchy structure). Both
header and payloads should be usable in a message passing environment.

Different payloads might have different serialisation strategies. E.g.:

➤ TPC clusters / tracks: flat POD data with relative indexes, well suitable for GPU processing.

➤ QA histograms: serialised ROOT histograms.

➤ AOD: columnar data format based on Arrow.

DataHeade
r Payload1 DataHeade

r Payload2Custom
header ... ()IndexDataHeade

r

14

ALICE O2: SOFTWARE FRAMEWORK IN ONE SLIDE

Transport Layer: ALFA / FairMQ1
➤ Standalone processes for deployment flexibility.
➤ Message passing as a parallelism paradigm.
➤ Shared memory backend for reduced memory usage and improved performance.

Data Processing Layer (DPL)

Abstracts away the hiccups of a distributed system, presenting the user a familiar "Data
Flow" system.
➤ Reactive-like design (push data, don't pull)
➤ Declarative Domain Specific Language for topology configuration (C++17 based).
➤ Integration with the rest of the production system, e.g. Monitoring, Logging, Control.
➤ Laptop mode, including graphical debugging tools.

15

Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends:
➤ Simplified, zero-copy format optimised for performance and direct GPU usage. Useful e.g. for

TPC reconstruction on the GPU.
➤ ROOT based serialisation. Useful for QA and final results.
➤ Apache Arrow based. Useful as backend of the analysis ntuples and for integration with other

tools.

ALICEO2 DATA PROCESSING LAYER

Task1

Task2 Task3

16

readeAODs reader reader
device

O2 DPL

User provides a description
in terms of tasks and physics
quantities.

AliceO2 Data Processing Layer
(DPL) translates the implicit
workflow(s) defined by physicists
to an actual FairMQ topology of
devices, injecting readers and
merger devices, completing the
topology and taking care of
parallelism / rate limiting.

Results.root

Mergerdevice1 device2 device3

DATA PROCESSING LAYER: BUILDING BLOCK
A DataProcessorSpec defines a pipeline
stage as a building block.

➤ Specifies inputs and outputs in terms of
the O2 Data Model descriptors.

➤ Provide an implementation of how to act on
the inputs to produce the output.

➤ Advanced user can express possible data or
time parallelism opportunities.

a b

AlgorithmSpec

DataProcessorSpec

InputSpec OutputSpec

17

DATA PROCESSING LAYER: IMPLICIT TOPOLOGY

B

C

B D
E

D

C E

Data Processing Layer

Topology is defined implicitly.
Topological sort ensures a viable dataflow is constructed (no cycles!).
Laptop users gets immediate feedback through the debug GUI.
Service API allows integration with non data flow components (e.g. Control)

18

19

Debug GUI

20

4 FairMQ devices
exchanging messages in a

diamond topology

21

GUI shows state of the various
message queues in realtime.

Different colors mean different
state of data processing.

Clicking on a node provides the log

22

An embedded metrics viewer provides in GUI
feedback on DPL & user defined metrics.

Multiple backends supported, including of course
InfluxDB (i.e. for ALICE data taking) and Monalisa

(Grid deployments).
See "Towards the integrated ALICE Online-Offline
(O2) monitoring subsystem", by Adam Wegrzynek

23

NUMA
Domain 1

GPU
Processing

Shared
Input

NUMA
Domain 2

Shared CPU
Processing

Shared CPU
Processing

Output

ANALYSIS MODEL: RUN 3
Solid foundations: the idea of organised analysis (trains) will
stay. Improve on the implementation.

➤ x100 more collisions compared to present setup, AOD only.

➤ Initial analysis of 10% of the data at fewer Analysis Facilities,
highly performant in terms of data access.

➤ Full analysis of a validated set of wagons on the Grid
=> Prioritise processing according to physics needs.

➤ Streamline data model, trade generality for speed, flatten data
structures.

➤ Recompute quantities on the fly rather than storing them.
 CPU cycles are cheap.

➤ Produce highly targeted ntuples (in terms of information
needed and selected events of interest) to reduce turnaround for
some key analysis.

➤ Goal is to have each Analysis Facility go through
the equivalent of 5PB of AODs every 12 hours (~100GB/s).

25

Reconstruction
14%

MC
72%

Analysis
14%

Calibration
1%

Asynchronous
35%

Synchronous Reco
5%

MC
25%

Analysis
34%

Today Run 3+

BUILDING AN ANALYSIS FRAMEWORK FOR THE YEARS TO COME

Homogeneity: use the same message passing architecture which
will be used for data taking to ensure homogeneity, integration
and provide easy access to parallelism for the analysis tasks.

Fast: simplify the Analysis Data Model to achieve higher
performance (e.g. via reducing I/O cost, vectorisation) for critical
usecases.

Familiar: hide as much as possible the internal details and
expose an API which provides a classic Object Oriented "feeling".

Modern: follow developments in ROOT and provide an easy
way to access modern ROOT tools like RDataFrame.

Open to the rest of the world: consider integration with
external analysis frameworks (e.g. Python Pandas) and ML
toolkits (e.g. Tensorflow) as a requirement.

26

Credits: http://www.pouet.net/prod.php?which=401

DATA MODEL FOR ANALYSIS

Flat tables: in order to minimise the I/O cost and improve vectorisation / parallelism
opportunity data will be organised in memory as column-wise collections (Tables)
holding the various entities. Frontend API will still allow for nested collections but the
backend will map them to a set of chunked columns.

Relational: relationships between entities are expressed in a relational manner (e.g.
via indexes between tables) or as optional values (optimised via a bitmask). Frontend
will still allow references, however pointers are banned from the backend.

Shared memory / message passing friendly: if we want our analysis framework to
be a good citizen in the O2 world, we need the data model and the backend to be
optimised for shared memory backed message passing, so that we are not hit by
serialisation / deserialisation costs.

27

APACHE ARROW: A FEW TECHNICAL DETAILS

In-memory column oriented storage (think TTrees, but shared memory friendly). Full
description: https://arrow.apache.org/docs/memory_layout.html. Data is organized in Tables. Tables are
made of Columns. Columns are (<metadata>, Array). An Array is backed by one or multiple Buffers.

Nullable fields. An extra bitmap can optionally be provided to tell if a given slot in a column is
occupied.

Nested types. Usual basic types (int, float, ..). It’s also possible (via the usual record shredding
presented in Google’s Dremel paper) to support nested types. E.g. a String is a List<Char>.

No (generic) polymorphism. The type in an array can be nested, but there is no polymorphisms
available (can be faked via nullable fields & unions).

Gandiva: JIT compiled, vectorised, query engine now available in upstream.

Now used in production for Run 3 Analysis.

28

https://arrow.apache.org/docs/memory_layout.html

A TRIVIAL ANALYSIS

➤ Define a standalone
workflow

➤ Define an AnalysisTask

➤ Define outputs, filters,
partitions.

➤ Subscribe to the tracks for
a given timeframe

➤ Compute (e.g.) φ from the
propagation parameters

➤ Fill a plot

#include "Framework/runDataProcessing.h"
#include "Framework/AnalysisTask.h"
#include "Framework/AnalysisDataModel.h"
#include <TH1F.h>

using namespace o2;
using namespace o2::framework;

struct ATask : AnalysisTask
{
 OutputObj<TH1F> hPhi{TH1F("phi", "Phi", 100, 0, 2 * M_PI)};
 Filter ptFilter = aod::track::pt > 1;
 Partition pos = aod::track::x >= 0;

 void process(aod::Tracks const& tracks)
 {
 for (auto& track : pos(tracks)) {
 float phi = asin(track.snp()) + track.alpha() + M_PI;
 hPhi->Fill(phi);
 }
 }
};

WorkflowSpec defineDataProcessing(ConfigContext const&)
{
 return WorkflowSpec{
 adaptAnalysisTask<ATask>("mySimpleTrackAnalysis", 0)
 };
}

29

...AND ONE STEP BEYOND...

Currently in https://github.com/jgrosseo/AliceO2/tree/corr_an

Courtesy of Jan-Fiete Grosse-Oetringhaus 30

STRATEGY UNDERNEATH THE EXAMPLE

This is of course something very trivial, but it well illustrates the pursued strategy:

➤ Task based API: reproduce run 1 and 2 analysis task concept to make transition easier. Task members are
extracted to define outputs, filters, selections.

➤ O2 DPL underpinnings: this is actually an O2 DPL workflow, heavy-lifting to map it to the message passing
topology is taken care of by the framework.

➤ Type-safe: users subscribe to the inputs they need, in a type safe manner. aod::Tracks is a an actual type, which
the DPL maps automatically to messages matching the associated Data Header.

➤ Arrow Skins: users are exposed to a familiar Imperative / "Object Oriented" API to access physics objects. In
reality they act on an Apache Arrow backed AoSoA data store, on top of which the Framework allows to construct
"Skins". Similar to LHCb SOAContainer or CMS FWCore/SOA.

➤ Generic: the signature of the process method is what drives the subscription to data (via template magic). E.g. to
get all the tracks associated to a given collision:

 void process(aod::Collision& collision, aod::Tracks const& tracks)

31

ARROW SKINS: DATA DEFINITION EXAMPLE
#include "Framework/ASoA.h"

namespace o2::aod
{
namespace track
{
DECLARE_SOA_COLUMN(CollisionId, collisionId, int, "fID4Tracks");
DECLARE_SOA_COLUMN(Alpha, alpha, float, "fAlpha");
DECLARE_SOA_COLUMN(Snp, snp, float, "fSnp");
//...
DECLARE_SOA_DYNAMIC_COLUMN(Phi, phi,
[](float snp, float alpha) { return asin(snp) + alpha + M_PI; });

} // namespace track

using Tracks = soa::Table<track::CollisionId, track::Alpha,
 /* ... */,  
 track::Snp, track::Tgl,
 track::Phi<track::Snp, track::Alpha>>;

using Track = Tracks::iterator;
}

Column
The smallest component is the Column,
which is a type mapped to a specific column
name.

Table
A Table is a generic union of Column types.

Dynamic Columns
Non persistent (i.e. calculated) quantities
can be associated with a table in the form of
a so called dynamic column.

Object
An object is actually an alias to the
simultaneous iterators over the columns
involved in a given table row.

32

COMPOSABLE WORKFLOWS

33

Declarative configuration
allows for easy customisation:

e.g. adding a (one or more)
dispatchers for QA.

Workflows are executables. Piping on the shell
multiple executables builds the closure

workflow.

reconstruction-workflow | qc-workflow

http://cern.ch/go/Clx8
http://cern.ch/go/Clx8

HETEROGENEOUS COMPUTING SUPPORT

The mapping of an analysis workflow on top of a
topology of message passing entities has the advantage to
fit well physically / logically heterogeneous architectures.

Simple Multi Node support: the current code can in
particular already take advantage of multi-node setups
(e.g. using Kubernetes ReplicaSet), without the need of
an additional orchestrator entity. Each Replica knows the
full topology and uses the same deterministic resource
scheduling algorithm, resulting in seamless deployments
for a low number of distinct nodes.

Asymmetric nodes: we are exploring using the same
approach to model logically separated resources like GPU
or NUMA.

34

device3device1 device2

Task1

Task2 Task3

Requires GPU, 8GB
Requires 16GB of RAM

Requires 16GB of RAM

32GB 32GB1GPU

O2 DPL

Resources can be either physically separated,
or logically different domains within the same box.

Tasks can declare their
special resource needs

