

Insights on frontend organization and specifications

(very EIC Detector-1 oriented)

Irakli Mandjavidze

Irfu, CEA Saclay Gif-sur-Yvette, 91191 France

Streaming Readout X JLAB, May 17-19, 2022

Outlook

- Frontend organization
- Timing & clock
- Bather questions than answers from a designer who needs to build a frontend for EIC. Anter the Power / slow control / monitoring
- Run control
- Data
- Integration
- Summary

EIC Detector

• Diversity of technologies

Backward Endcap Tracking:

- · ITS3 MAPS Si discs (x4)
- AC-LGAD

PID:

- mRICH
- AC-LGAD TOF
- PbWO₄ EM Calorimeter (EEMC)

O(20 million) electronics channels

Barrel Tracking:

- ITS3 MAPS Si (vertex x3; sagitta x2)
- µRWell outer layer (x2)
- AC-LGAD (before hpDIRC)
- µRWell (after hpDIRC)

h-PID:

- AC-LGAD TOF
- hpDIRC

Electron ID:

· SciGlass EM Cal (BEMC)

Hadron calorimetry:

- Outer Fe/Sc Calorimeter (oHCAL)
- Instrumented frame (iHCAL)

Forward Endcap Tracking:

- ITS3 MAPS Si discs (x5)
- AC-LGAD

PID:

- dRICH
- AC-LGAD TOF

Calorimetry:

- Pb/ScFi shashlik (FEMC)
- Longitudinally separated hadronic calorimeter (LHFCAL)

EIC Detector

Uniform streaming DAQ

71116

Frontend electronics

A popular organization of recent years

- \rightarrow A bi-directional optical link for clock, synchronization (run control), data, configuration
 - Also for slow-control and monitoring, at least partially
- \rightarrow Obviously detector-family specific frontend chip
- \rightarrow Common e/o interface

 \rightarrow DAQ interface logic: how common can it be to a majority of sub-detectors, if not to all?

- Like the IpGBT ASIC for the LHC experiments (coupled with e/o VTRX+)
- Or if implemented in FPGA, with a common framework and sub-detector specific modules

A centralized effort within the EIC project for DAQ interface and link?

SRO-X, 18/May/2022

irakli.mandjavidze@cea.fr

Clock distribution and timing

Clock quality is only one part in long list of contributions determining resulting timing precision

- Marginal improvement pushing clock quality to 5ps RMS jitter
- \rightarrow For small signals: major contribution from sensor / preamplifier / discriminator

Precision clock distribution is extremely complex: do not over-constraint requirements

- FE ASICs with jitter cleaner PLLs
 - \rightarrow Generation of internal clocks including the one used for measurements
 - \rightarrow Common for precision timing ASICs

Requirements on clock distribution system may be somewhat relaxed

- Frontend clock distribution with COTS components
 - \rightarrow Assuming low radiation level allows their use

- The quality of recovered by FPGA clock may not be enough for precision timing measurements
 → To be compared to the IpGBT performance: <4ps RMS jitter for 40 MHz recovered clock
- The use of an on-board jitter cleaner PLL is a common practice
 - \rightarrow SEU may cause phase shifts which are slow to recover, e.g. O(10 $\mu s)$
- Recovered clock must have the same phase as the distributed one
- Attention to power and environmental stability
 - \rightarrow Power modulation impact on clock jitter (RMS): O(few ps) / mV

Power and slow control

Frontend power distribution

- 1.5 T magnetic field requires efficient power regulation
 - \rightarrow High efficiency DC/DC converter for digital power
 - \rightarrow LDO regulators for analog circuitry

Common effort for magnetic field (and low radiation) tolerant power supply components?

Common effort to an uniform power distribution (and cooling) scheme?

SRO-X, 18/May/2022

irakli.mandjavidze@cea.fr

Frontend slow control and monitoring

- Part of the backend-fronted data flow over the bi-directional optical link
 - → Embedded ADC to monitor on-board generated voltages, current, temperature

- An alternative of some kind field-bus and on-board micro-controller?
 - \rightarrow Possibility to detect corruption due to radiation and to reboot frontend (firmware)

Run control

Frontend run control

- Run configuration
 - \rightarrow A bi-directional frontend / backend link conveys I2C (SPI) protocol
 - \rightarrow Several I2C chains may be needed if "N" is large
 - There is a companion GBT-SCA chip developed by CERN

Avoid interoperability surprises

- \rightarrow Slaves are implemented by ASIC designers within different sub-detector groups
- \rightarrow Master is implemented by a (central) group
- An alternative of some kind field-bus and on-board micro-controller?
 - \rightarrow Possibility to detect corruption due to radiation and to reboot frontend (firmware)

SRO-X, 18/May/2022

irakli.mandjavidze@cea.fr

Frontend run control

- Run control
 - \rightarrow Clock synchronous commands
 - Bx clock phase recover
 - ReSync, Start / Stop, ...
 - \rightarrow Synchronization of frontends at BX level O(ns)
 - This is different from precision timing synchronization O(10ps)

- A set of common broadcast synchronous commands
- Sub-detector specific multicast commands, *e.g.* calibration sequences, pedestal measurements

In opposite direction, from FE to DAQ, fast pass for error notifications is needed

SRO-X, 18/May/2022

irakli.mandjavidze@cea.fr

Data

Example of a multi-channel ASIC for MPGD tracker

- FEE based on multi-channel MPGD ASICs
 - \rightarrow Compatible with streaming readout
 - \rightarrow Typical characteristics
 - Gain: 10 down to 4 mV/fC
 - Peaking time: 75 to 300 ns
 - Detector capacitance: up to 400 pF
 - 10-12 bit ADC; 10-20 ns timing

- \rightarrow On-chip zero suppression
 - Possibly with common mode noise subtraction
 - Peak finding ZS: amplitude, time and ToT
 - Sampling ZS: signal shape around ToT
 - "Region of interest" ZS: if a strip exceeds a high threshold, forced or lower threshold reading of its neighbors

ASICs

- \rightarrow 64-channel peak finding VMM3a
- \rightarrow 32-channel sampling Sampa
- \rightarrow Next generation 64-channel sampling Salsa
 - On-going initiative of Brazilian institutes (Sampa) and Irfu (AGET, Dream)
 - See for example: https://indico.cern.ch/event/1040996/contributions/4402636/

MPGD ASIC data rate: ZS and common mode noise

- Assume a 64-channel sampling ASIC with 12-bit sample per channel
- Full readout of the ASIC no ZS
 - \rightarrow 50 MSPS: 50 Gbit/s (including 20% overhead)

Not a realistic option: ZS is needed

- Coherent noise subtraction
 - $\rightarrow\,$ Based on dedicated CMN channels in ASIC not connected to detector
 - Evaluates noise in chip / board but not coming from detector (and detector interconnect e.g. cables)
 - \rightarrow Based on group of channels connected to consecutive detector strips
 - External to chip in streaming readout: move 25-50 Gbit/s data out of chip
 - External to chip in triggered readout: doable
 - \rightarrow If needed, perform coherent noise removal on chip prior to ZS

What about *in-situ* detector studies when full readout is necessary?

At low frequency with a dedicated "trigger" command? In a pre-scale mode? Should not be overlooked when building the DAQ system

MPGD FEE data rate: sampling readout

- Sampling ASIC with 12-bit sample per channel
- Signal shape ZS
 - \rightarrow 500 ns readout window when signal is above threshold

 64-channel ASIC 				(e.g. Salsa)	and 512-chann	el FEE with 8 ASICs
Channel rate kHz		Sampling MSPS	Number of samples	64-chanel ASIC Mbit/s	512-chanel FEE Gbit/s	Remarks
2	(physics)		25	46	0.4	5-10 Gbit/s aggregation link unjustified
10	(safety)	50		230	1.9	5 Gbit/s aggregation link is enough
50	(Clas12)			1 150	9.5	20 Gbit/s aggregation link needed

• 32-channel (Sampa) based 256-channel FEE

- \rightarrow 5-10 Gbit/s link can be justified for 50 kHz channel hit rates
 - See in backup

MPGD FEE data rate: peak-finding readout

- Peak-finding ASIC
- ZS with time-amplitude readout
 - \rightarrow Assume 12-bit timing, 8-bit ToT and 12-bit amplitude
- 64-channel ASIC (e.g. VMM3a)

and 512-channel FEE with 8 ASICs

 \rightarrow Or a new development

Channel rate kHz		64-chanel ASIC Mbit/s	512-chanel FEB Gbit/s	Remarks
2	(physics)	5	0.04	5.40 Chit/s second setion link universities
10	(safety)	25	0.2	5-10 Golt/s aggregation link unjustified
50	(Clas12)	125	1	2 Gbit/s aggregation link is enough

• Knowledge of channel occupancies (physics, background, noise) is important to optimize aggregation

Is it acceptable to have an important number of high rate links frankly underused?
e.g. power, cost
Is it worth to complicate system adjusting link speeds?
e.g. 2-stage aggregation, cost

Integration

An MPGD tracker

- A 4-layer ~66k-channel cylindrical Micromegas barrel tracker studied for Athena
 - \rightarrow Scarce space for electronics even if placed in the cracks on both sides
 - Readout link
 - LV, HV, gas
 - Cooling
 - \rightarrow Magnetic field
 - \rightarrow Material budget restrictions
 - Impact on cooling
 - \rightarrow Radiation?

• FEE length determined by detector geometry

- \rightarrow Must contain enough chips to read the region
 - Single row of ASICs closest to detector
 - Simplify interconnect

Elementary detection tile

FEE

Targeting

150µ

resolution

FEE constructions that could fit

• A 4-layer ~66k-channel Micromegas barrel tracker studied for Athena

- 64-channel ASIC
- 132 units of 512-channel FEE
- 225 mm to fit 8 ASICs

Illustration: Atlas FEM8 prototype 512 channels: with 8 VMM3a: 215 x ~60

- Detector-FEE connectivity with modest 0.8 mm pitch could fit
- 32-channel (Sampa) based 256-channel FEE fits too (backup)
- Looks encouraging, but...

SRO-X, 18/May/2022

Example of integration challange

• ... 280k-channel 3-layer µRWell cylindrical tracker in the same volume targeting 50µ resolution

- Assuming frontend electronics is placed on periphery and on both sides: 2 x 10 m
 - 64-channel VMM: 21 mm x 21 mm package
 - \rightarrow 4.5K chips required
 - \rightarrow 768 chips can be placed in a single row
 - Even less denser for 32-channel (Sampa) based 256-channel FEE (backup)
 - \rightarrow Multi-layer FE stack with several rows of ASICs?

Place for electronics and services is scarce – collaboration of subsystems to share it

Summary

• Frontend electronics specifications

→ Sub-detector: interface, S/N, dynamic range, saturation, timing, channels, data, environment, mechanics

- Sub-detector responsibility (e.g. some hints for MPGD in backup)
- \rightarrow Common: data aggregation, clock and command distribution, configuration, monitoring, protocols
 - Leaded by a central DAQ group
- Protocol / format definition
 - \rightarrow Transport layer: common to most (all?) sub-detectors
- Central DAQ group in close collaboration with sub-detectors? \rightarrow Application layer: data, synchro commands, errors: all sub-system comply
- Clock distribution
 - \rightarrow Do not over-constraint it is not easy
 - \rightarrow Experience with CERN developments
 - e.g. TCLINK IP: Timing Compensated Link
- Common efforts welcome (needed, required)
 - \rightarrow DAQ interface logic and optical bidirectional link
- eRD104 Silicon service reduction \rightarrow COTS components validation for magnetic field and radiation
 - Power regulators
 - FPGAs, optical transceivers, PLLs
 - \rightarrow Components within the HEP community
 - e.g. DC-DC and linear regulators, precision clock fan-out, IP blocks

Backup

Some links

- Xilinx, Device Reliability Report
 - \rightarrow <u>https://docs.xilinx.com/v/u/en-US/ug116</u>
 - \rightarrow Single event upsets, among others
- High Precision Timing, CERN
 - \rightarrow <u>https://ep-ese.web.cern.ch/project/high-precision-timing</u>

🗶 XII INX

→ <u>https://espace.cern.ch/project-versatile-link/public/default.aspx</u>

Versatile link @ CERN IpGBT Link Architecture

Paulo.Moreira@cern.ch

Clock

Precision clock distribution

High speed scope

Different means to compensate high, middle and low frequency phase variations of clocks on different leafs

Expected bunch crossing phase change @ HL-LHC

Bunch crossing phase change measured in with CMS ECAL data

Embedded precision clock distribution

- Use of an external PLL to clean-up recovered by FPGA clock
 - \rightarrow Assuming low radiation level allows its use

• If PLL does not have enough outputs use either:

A small size multi-drop topology (e.g. 2)

• Make sure clock phase adjustment is possible to decode RxData in the ASICs

• Frontend clock distribution with COTS components

 \rightarrow Assuming low radiation level allows their use

- The quality of recovered by FPGA clock may not be enough for precision timing measurements
 → To be compared to the IpGBT performance: <4ps RMS jitter for 40 MHz recovered clock
- Jitter cleaner PLL embedded in ASICs
- Attention to power and environmental stability
 - \rightarrow Power modulation impact on clock jitter (RMS): O(few ps) / mV

Data

MPGD FEE data rate: sampling readout

- Sampling ASIC with 12-bit sample per channel
- Signal shape ZS
 - \rightarrow 500 ns readout window when signal is above threshold

•	Existing 32-channel ASIC

Channel rate kHz		Sampling MSPS	Number of samples	
2	(physics)			
10	(safety)	20	10	
50	(Clas12)			

(e.g. Sampa)
32-chanel ASIC
Mbit/s
19
92
460

and 256-channel FEE with 8 ASICs

256-chanel FEE Gbit/s	Remarks			
0.16	5.40 Chit/s serve setien link universified			
0.75	5-10 Gbit/s aggregation link unjustified			
3.7	5-10 Gbit/s aggregation link justified			

New development: 6				
Chanr kHz	nel rate	Sampling MSPS	Number of samples	
2	(physics)			
10	(safety)	50	25	
50	(Clas12)			

-C	hannel ASIC
	64-chanel ASIC Mbit/s
	46
	230
	1 150

and 512-channel FEE with 8 ASICs

512-chanel FEE Gbit/s	Remarks				
0.4	5-10 Gbit/s aggregation link unjustified				
1.9	5 Gbit/s aggregation link is enough				
9.5	20 Gbit/s aggregation link needed				

SRO-X, 18/May/2022

Integration

Athena Micromegas tracker: FEE constructions that could fit

- A 4-layer ~66k-channel Micromegas barrel tracker studied for Athena
 - 32-channel ASIC
 - 264 units of 256-channel FEE
 - 150 mm to fit 8 ASICs

Illustration: fragment of sPhenix TPC FEE 256 channels: 8 Sampas: 140 x 140

- 64-channel ASIC
- 132 units of 512-channel FEE
- 225 mm to fit 8 ASICs

Illustration: Atlas FEM8 prototype 512 channels: with 8 VMM3a: 215 x ~60

• Detector-FEE connectivity with modest 0.8 mm pitch could fit

Example of integration challange

• ... 280k-channel 3-layer μ RWell cylindrical tracker in the same volume targeting 50 μ resolution

- Assuming frontend electronics is placed on periphery and on both sides
 - \rightarrow 2 x 10 m of total periphery
 - 32-channel Sampa
 - \rightarrow 15 mm x 15 mm package
 - \rightarrow 9K chips required
 - \rightarrow 1.1K chips can be placed in a single row
 - 35K channels

- 64-channel VMM
 - \rightarrow 21 mm x 21 mm package
 - \rightarrow 4.5K chips required
 - \rightarrow 768 chips can be placed in a single row
 - 48K channels

 \rightarrow Multi-layer FE stack with several rows of FE ASICs?

Place for electronics and services is scarce – collaboration of subsystems to share it

irakli.mandjavidze@cea.fr

MPGD ↔ ASIC interface Determining working point

A non-EIC related example

Finding a working point for an MPGD detector

- Effect of ASIC dynamic range and detector gain
- Asses saturation probability and charge measuring accuracy
 - \rightarrow Take into account charge transfers in detector and towards CSA

- Choice of dynamic range and detector gain
 - \rightarrow Tradeoff between measurement accuracy and saturation probability

Finding a working point: A detector example

- Typical signal: ~500 eV
 - \rightarrow Ionization energy: 27 eV
 - \rightarrow Primary electrons: ~18.5

- Cluster size: ~5 strips
 - \rightarrow Strip with max energy: 65% of cluster energy hypothesis
- Detector capacitance: 150 200 pF
 - \rightarrow Charge transfer to front end electronics: ~80%
- Strip hit rate: 10-20 kHz

Finding a working point: Detector gain impact on a CSA

• Assume detector gain within 8 000 - 10 000 range

Probability of charge deposit on a channel

- 20 mV/fC: 100 fC range might be overrun in ~5% cases
 - $\rightarrow\,$ Is there a problem to saturate CSA with 2 times higher charge at ~200 Hz
 - \rightarrow What is the level of saturation when real problems start

• 10 mV/fC range looks comfortable

Finding a working point: Signal to noise

• Assumptions

- \rightarrow ENC @ 160 ns peaking time: 3.5 ke for 150-200 fC input capacitance
- \rightarrow Strip with max energy: 65% of cluster energy
- \rightarrow Charge collection efficiency: 75%

Detector gain	Signal @ CSA ke – fC	S/N	VFE gain mV / fC	Signal ADC bin
		10.5	30	150
8 000	69.6 11.0		20	100
8 000	68.0 - 11.0	19.0	10	50
			4	20
			30	190
10.000		24 5	20	130
10 000	85.8 - 13.7	24.5	10	64
			4	26

- In case S/N=~20 is not enough, higher detector gain will be needed
 - \rightarrow With a potential rick of more frequent saturations

Finding a working point: Threshold to noise

• ENC of 3.5 ke⁻ for 150-200 fC input capacitance

Detector gain	Signal @ CSA ke – fC	S/N	T/N	E _{MIN} /E %
8 000	68.6 - 11.0	19.6		13
10 000	85.8 – 13.7	24.5	4	10.5

- \rightarrow @ T/N=4, if a strip sees < 14 ke⁻ (11-13% of signal energy), it will be suppressed
 - Need to study charge distribution within clusters to asses the consequences
- \rightarrow Is it possible / interesting to perform a kind of "region of interest" ZS on-line?
 - If a strip exceeds high threshold, forced or lower threshold reading of its neighbors

• Min detectable signal at T/N = 4 level

Min signal	30 mV/fC	20 mV/fC	10 mV/fC	4 mV/fC
	66 fC	100 fC	200 fC	500 fC
ADC bin	35	23	12	5

 \rightarrow 20 mV/fC is sure, 10 mV/fC looks comfortable

• Study T/N = 5 (or even 6) cases