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EIC Detector

• Diversity of technologies
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O(20 million) electronics channels



EIC Detector

• Uniform streaming DAQ
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Frontend electronics
• A popular organization of recent years

→ A bi-directional optical link for clock, synchronization (run control), data, configuration
■ Also for slow-control and monitoring, at least partially

→ Obviously detector-family specific frontend chip

→ Common e/o interface

→ DAQ interface logic: how common can it be to a majority of sub-detectors, if not to all?
■ Like the lpGBT ASIC for the LHC experiments (coupled with e/o VTRX+) 

■ Or if implemented in FPGA, with a common framework and sub-detector specific modules

A centralized effort within the EIC project for DAQ interface and link?
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Clock distribution and timing
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• Clock quality is only one part in long list of contributions determining resulting timing precision

→ Quadratic sum of contributions

→ For large signals:  25ps 15ps ≈0 15ps 10ps

■ Marginal improvement pushing clock quality to 5ps RMS jitter

→ For small signals: major contribution from sensor / preamplifier / discriminator

Precision clock distribution is extremely complex: do not over-constraint requirements

About timing and clock distribution
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Example timing figures are approximates



About timing and clock distribution

• FE ASICs with jitter cleaner PLLs

→ Generation of internal clocks including the one used for measurements

→ Common for precision timing ASICs

Requirements on clock distribution system may be somewhat relaxed
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• Frontend clock distribution with COTS components

→ Assuming low radiation level allows their use

• The quality of recovered by FPGA clock may not be enough for precision timing measurements

→ To be compared to the lpGBT performance: <4ps RMS jitter for 40 MHz recovered clock

• The use of an on-board jitter cleaner PLL is a common practice

→ SEU may cause phase shifts which are slow to recover, e.g. O(10 µs)

• Recovered clock must have the same phase as the distributed one

• Attention to power and environmental stability

→ Power modulation impact on clock jitter (RMS): O(few ps) / mV
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Power and slow control
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Frontend power distribution

• 1.5 T magnetic field requires efficient power regulation

→ High efficiency DC/DC converter for digital power

→ LDO regulators for analog circuitry

Common effort for magnetic field (and low radiation) tolerant power supply components?

Common effort to an uniform power distribution (and cooling) scheme?
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Frontend slow control and monitoring

• Part of the backend-fronted data flow over the bi-directional optical link
→ Embedded ADC to monitor on-board generated voltages, current, temperature

• An alternative of some kind field-bus and on-board micro-controller?
→ Possibility to detect corruption due to radiation and to reboot frontend (firmware)
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Run control
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Frontend run control

• Run configuration

→ A bi-directional frontend / backend link conveys I2C (SPI) protocol

→ Several I2C chains may be needed if “N” is large

■ There is a companion GBT-SCA chip developed by CERN

• Avoid interoperability surprises

→ Slaves are implemented by ASIC designers within different sub-detector groups

→ Master is implemented by a (central) group

• An alternative of some kind field-bus and on-board micro-controller?

→ Possibility to detect corruption due to radiation and to reboot frontend (firmware)
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Frontend run control

• Run control

→ Clock synchronous commands

■ Bx clock phase recover

■ ReSync, Start / Stop, …

→ Synchronization of frontends at BX level – O(ns)

■ This is different from precision timing synchronization – O(10ps)

• A set of common broadcast synchronous commands

• Sub-detector specific multicast commands, e.g. calibration sequences, pedestal measurements

In opposite direction, from FE to DAQ, fast pass for error notifications is needed
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Data
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Example of a multi-channel ASIC for MPGD tracker
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DSP Buffer
Output 

link

CSA Shaper Digi

• FEE based on multi-channel MPGD ASICs
→ Compatible with streaming readout

→ Typical characteristics
■ Gain: 10 down to 4 mV/fC

■ Peaking time: 75 to 300 ns

■ Detector capacitance: up to 400 pF

■ 10-12 bit ADC; 10-20 ns timing

→ On-chip zero suppression
■ Possibly with common mode noise subtraction

■ Peak finding ZS: amplitude, time and ToT

■ Sampling ZS: signal shape around ToT

■ “Region of interest” ZS: if a strip exceeds a high threshold, forced or lower threshold reading of its neighbors

• ASICs
→ 64-channel peak finding VMM3a

→ 32-channel sampling Sampa

→ Next generation 64-channel sampling Salsa
■ On-going initiative of Brazilian institutes (Sampa) and Irfu (AGET, Dream)

■ See for example: https://indico.cern.ch/event/1040996/contributions/4402636/

https://indico.cern.ch/event/1040996/contributions/4402636/


MPGD ASIC data rate: ZS and common mode noise

• Assume a 64-channel sampling ASIC with 12-bit sample per channel

• Full readout of the ASIC - no ZS

→ 50 MSPS: 50 Gbit/s (including 20% overhead)

Not a realistic option: ZS is needed

• Coherent noise subtraction

→ Based on dedicated CMN channels in ASIC not connected to detector

■ Evaluates noise in chip / board but not coming from detector (and detector interconnect – e.g. cables)

→ Based on group of channels connected to consecutive detector strips

■ External to chip in streaming readout: move 25-50 Gbit/s data out of chip

■ External to chip in triggered readout: doable

→ If needed, perform coherent noise removal on chip prior to ZS

What about in-situ detector studies when full readout is necessary?

At low frequency with a dedicated “trigger” command? In a pre-scale mode?

Should not be overlooked when building the DAQ system

SRO-X, 18/May/2022 irakli.mandjavidze@cea.fr 18



MPGD FEE data rate: sampling readout

• Sampling ASIC with 12-bit sample per channel

• Signal shape ZS
→ 500 ns readout window when signal is above threshold

• 64-channel ASIC                         (e.g. Salsa)          and 512-channel FEE with 8 ASICs

• 32-channel (Sampa) based 256-channel FEE
→ 5-10 Gbit/s link can be justified for 50 kHz channel hit rates

■ See in backup
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Channel rate
kHz

Sampling
MSPS

Number of 
samples

64-chanel ASIC
Mbit/s

512-chanel FEE
Gbit/s

Remarks

2          (physics)

50 25

46 0.4 5-10 Gbit/s aggregation link unjustified

10         (safety) 230 1.9 5 Gbit/s aggregation link is enough

50         (Clas12) 1 150 9.5 20 Gbit/s aggregation link needed



MPGD FEE data rate: peak-finding readout

• Peak-finding ASIC

• ZS with time-amplitude readout
→ Assume 12-bit timing, 8-bit ToT and 12-bit amplitude

• 64-channel ASIC (e.g. VMM3a)     and 512-channel FEE with 8 ASICs
→ Or a new development

• Knowledge of channel occupancies (physics, background, noise) is important to optimize aggregation

Is it acceptable to have an important number of high rate links frankly underused?
e.g. power, cost

Is it worth to complicate system adjusting link speeds?
e.g. 2-stage aggregation, cost
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Channel rate
kHz

64-chanel ASIC
Mbit/s

512-chanel FEB
Gbit/s

Remarks

2          (physics) 5 0.04
5-10 Gbit/s aggregation link unjustified

10         (safety) 25 0.2

50         (Clas12) 125 1 2 Gbit/s aggregation link is enough



Integration
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An MPGD tracker

• A 4-layer ~66k-channel cylindrical Micromegas barrel tracker studied for Athena

→ Scarce space for electronics even if placed in the cracks on both sides

■ Readout link

■ LV, HV, gas

■ Cooling

→ Magnetic field

→ Material budget restrictions

■ Impact on cooling

→ Radiation?

• FEE length determined by detector geometry

→ Must contain enough chips to read the region

■ Single row of ASICs – closest to detector

■ Simplify interconnect
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• A 4-layer ~66k-channel Micromegas barrel tracker studied for Athena

• Detector-FEE connectivity with modest 0.8 mm pitch could fit 

• 32-channel (Sampa) based 256-channel FEE fits too (backup)

• Looks encouraging, but…

FEE constructions that could fit

SRO-X, 18/May/2022 irakli.mandjavidze@cea.fr 23

Illustration: Atlas FEM8 prototype
512 channels: with 8 VMM3a: 215 x ~60

• 64-channel ASIC

• 132 units of 512-channel FEE

• 225 mm to fit 8 ASICs

215 mm



• 64-channel VMM: 21 mm x 21 mm package

→ 4.5K chips required

→ 768 chips can be placed in a single row

• … 280k-channel 3-layer µRWell cylindrical tracker in the same volume targeting 50µ resolution

• Assuming frontend electronics is placed on periphery and on both sides: 2 x 10 m

■ Even less denser for 32-channel (Sampa) based 256-channel FEE (backup)

→ Multi-layer FE stack with several rows of ASICs?

Place for electronics and services is scarce – collaboration of subsystems to share it

Example of integration challange
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Summary

• Frontend electronics specifications
→ Sub-detector: interface, S/N, dynamic range, saturation, timing, channels, data, environment, mechanics

■ Sub-detector responsibility (e.g. some hints for MPGD in backup)

→ Common: data aggregation, clock and command distribution, configuration, monitoring, protocols
■ Leaded by a central DAQ group

• Protocol / format definition
→ Transport layer: common to most (all?) sub-detectors
→ Application layer: data, synchro commands, errors: all sub-system comply

• Clock distribution
→ Do not over-constraint – it is not easy
→ Experience with CERN developments

■ e.g. TCLINK IP: Timing Compensated Link 

• Common efforts welcome (needed, required)
→ DAQ interface logic and optical bidirectional link
→ COTS components validation for magnetic field and radiation

■ Power regulators
■ FPGAs, optical transceivers, PLLs

→ Components within the HEP community
■ e.g. DC-DC and linear regulators, precision clock fan-out, IP blocks
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Backup
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Some links

• Xilinx, Device Reliability Report

→ https://docs.xilinx.com/v/u/en-US/ug116

→ Single event upsets, among others

• High Precision Timing, CERN

→ https://ep-ese.web.cern.ch/project/high-precision-timing

• Versatile Link, CERN

→ https://espace.cern.ch/project-versatile-link/public/default.aspx
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Versatile link @ CERN
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Clock
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Precision clock distribution
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Expected bunch crossing phase change @ HL-LHC
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Bunch crossing phase change measured in with CMS ECAL data 
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Embedded precision clock distribution

• Use of an external PLL to clean-up recovered by FPGA clock

→ Assuming low radiation level allows its use

• If PLL does not have enough outputs use either:

• Make sure clock phase adjustment is possible to decode RxData in the ASICs
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• Frontend clock distribution with COTS components

→ Assuming low radiation level allows their use

• The quality of recovered by FPGA clock may not be enough for precision timing measurements

→ To be compared to the lpGBT performance: <4ps RMS jitter for 40 MHz recovered clock

• Jitter cleaner PLL embedded in ASICs 

• Attention to power and environmental stability

→ Power modulation impact on clock jitter (RMS): O(few ps) / mV
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About timing and clock distribution
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Data
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MPGD FEE data rate: sampling readout

• Sampling ASIC with 12-bit sample per channel

• Signal shape ZS

→ 500 ns readout window when signal is above threshold

• Existing 32-channel ASIC            (e.g. Sampa) and 256-channel FEE with 8 ASICs

• New development:                64-channel ASIC       and 512-channel FEE with 8 ASICs
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Channel rate
kHz

Sampling
MSPS

Number of 
samples

64-chanel ASIC
Mbit/s

512-chanel FEE
Gbit/s

Remarks

2          (physics)

50 25

46 0.4 5-10 Gbit/s aggregation link unjustified

10         (safety) 230 1.9 5 Gbit/s aggregation link is enough

50         (Clas12) 1 150 9.5 20 Gbit/s aggregation link needed

Channel rate
kHz

Sampling
MSPS

Number of 
samples

32-chanel ASIC
Mbit/s

256-chanel FEE
Gbit/s

Remarks

2          (physics)

20 10

19 0.16
5-10 Gbit/s aggregation link unjustified

10         (safety) 92 0.75

50         (Clas12) 460 3.7 5-10 Gbit/s aggregation link justified



Integration
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• A 4-layer ~66k-channel Micromegas barrel tracker studied for Athena

• Detector-FEE connectivity with modest 0.8 mm pitch could fit

Athena Micromegas tracker: FEE constructions that could fit
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Illustration: Atlas FEM8 prototype
512 channels: with 8 VMM3a: 215 x ~60

Illustration: fragment of sPhenix TPC FEE
256 channels: 8 Sampas: 140 x 140

• 64-channel ASIC

• 132 units of 512-channel FEE

• 225 mm to fit 8 ASICs

• 32-channel ASIC

• 264 units of 256-channel FEE

• 150 mm to fit 8 ASICs

140 mm
215 mm



Example of integration challange
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• 32-channel Sampa

→ 15 mm x 15 mm package

→ 9K chips required

→ 1.1K chips can be placed in a single row

■ 35K channels

• 64-channel VMM

→ 21 mm x 21 mm package

→ 4.5K chips required

→ 768 chips can be placed in a single row

■ 48K channels

• … 280k-channel 3-layer µRWell cylindrical tracker in the same volume targeting 50µ resolution

• Assuming frontend electronics is placed on periphery and on both sides

→ 2 x 10 m of total periphery

→ Multi-layer FE stack with several rows of FE ASICs?

Place for electronics and services is scarce – collaboration of subsystems to share it



MPGD ↔ ASIC interface
Determining working point

A non-EIC related example
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Finding a working point for an MPGD detector

• Effect of ASIC dynamic range and detector gain

• Asses saturation probability and charge measuring accuracy
→ Take into account charge transfers in detector and towards CSA

• Choice of dynamic range and detector gain
→ Tradeoff between measurement accuracy and saturation probability
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Finding a working point: A detector example
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• Typical signal: ~500 eV

→ Ionization energy: 27 eV

→ Primary electrons: ~18.5

• Cluster size: ~5 strips

→ Strip with max energy: 65% of cluster energy - hypothesis

• Detector capacitance: 150 – 200 pF

→ Charge transfer to front end electronics: ~80%

• Strip hit rate: 10-20 kHz
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Finding a working point: Detector gain impact on a CSA

• Assume detector gain within 8 000 - 10 000 range
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Gain 8 000

• 20 mV/fC: 100 fC range might be overrun in ~5% cases
→ Is there a problem to saturate CSA with 2 times higher charge at ~200 Hz

→ What is the level of saturation when real problems start

• 10 mV/fC range looks comfortable
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Finding a working point: Signal to noise

• Assumptions

→ ENC @ 160 ns peaking time: 3.5 ke for 150-200 fC input capacitance

→ Strip with max energy: 65% of cluster energy

→ Charge collection efficiency: 75%

• In case S/N=~20 is not enough, higher detector gain will be needed

→ With a potential rick of more frequent saturations

Detector 
gain

Signal @ CSA
ke – fC

S/N VFE gain
mV / fC

Signal
ADC bin

8 000 68.6 – 11.0 19.6

30 150

20 100

10 50

4 20

10 000 85.8 – 13.7 24.5

30 190

20 130

10 64

4 26
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Finding a working point: Threshold to noise

• ENC of 3.5 ke- for 150-200 fC input capacitance

→ @ T/N=4, if a strip sees < 14 ke- (11-13% of signal energy), it will be suppressed 

■ Need to study charge distribution within clusters to asses the consequences

→ Is it possible / interesting to perform a kind of “region of interest” ZS on-line?

■ If a strip exceeds high threshold, forced or lower threshold reading of its neighbors

• Min detectable signal at T/N = 4 level

→ 20 mV/fC is sure, 10 mV/fC looks comfortable

• Study T/N = 5 (or even 6) cases

Detector 
gain

Signal @ CSA
ke – fC

S/N T/N EMIN/E
%

8 000 68.6 – 11.0 19.6

4

13

10 000 85.8 – 13.7 24.5 10.5

Min signal 30 mV/fC
66 fC

20 mV/fC
100 fC

10 mV/fC
200 fC

4 mV/fC
500 fC

ADC bin 35 23 12 5
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