
The DAQ and Online System for the ECCE Proposal at EIC
Martin L. Purschke

1

Long Island, NY RHIC/EIC from space

Manhattan

2

The ECCE DAQ

The ECCE DAQ and Timing system is heavily influenced by the corresponding
sPHENIX systems
Some personnel overlap, but also
• Key concepts (Streaming Readout, the use of ASICs, use of a “DAM” (FELIX in

2022)) are very similar
• Low-jitter clock distribution to a FELIX successor is a key ingredient
• Concept is designed with a distributed calibration/reconstruction paradigm (Grid) in

mind
• It’s scalable, and has well-defined hand-off points where common technologies

(transports, storage, monitoring and other APIs) take over

Conveners: Chris Cuevas (Jlab) and Martin Purschke (BNL)
Chris and I have been the conveners during the proposal phase.
Chris continues, and Jo Schambach (ORNL) has taken over from me (I got fired J)
(My real day job is the sPHENIX DAQ manager)

3

Today

• Detectors to be read out
• The DAQ plan
• Brief overview of what we have in terms of DAQ
• A few notes about SRO (this is the SRO workshop, after all)
• What we have done so far with existing DAQ technology for our R&D
• A few slides about the concept behind RCDAQ
• A feature list what we can do already today and during the R&D phase

From the Proposal

4

Hadron Beam
Electron Beam

The current sPHENIX
carriage with the outer
HCal and the magnet

From the Proposal

5

Rough Subsytem Count

6

• ~ 20 different detector components combined in the 3 parts
(backward/forward/central barrel)

• Just a quick overview for reference here (backward/forward), read all
about it in the proposal

An idea of the channel count

7

Makes about 21 million channels in round numbers

19,200
19,200

Data statistics

8

To put the red box into context – sPHENIX will write 1.5PB/day,
9PB a week – compare to 6PB/week here, in 2033 or so

DAQ Bird’s eye view

9

Only a few elements shown
FEEs vary a lot, complexity varies a lot, data volume varies a lot
Common denominator is that there is a uniform data structure at the
output of the DAM

Timing System

10

Pick a convenient multiple of the beam clock frequency

Have a global, never-reverting master BCO counter – 64 bit, transmit BCO LSBs to front-ends (40 bits)

Front-ends embed a number of those bits in their lower-level data structures (Felix - 40, FEE - 20)

The only way to send information to the FEE on a per-crossing basis (like, have the FEE do
something different in the abort gap)

Event / Streaming Data Structures

11

Each Front-End Card generally contributes what we call a “Packet”
to the overall event structures
A Packet ID uniquely identifies the detector component / front-end
card where it comes from
A hitformat field identifies the format of the data, und ultimately
selects the decoding algorithm
You interact with a standard set of APIs to access the data
We can change/improve the binary format and assign a new
hitformat for a packet at any time
Insulation of offline software from changes in the online system
API delivers the data independent of internal encoding

Very rough number: 250-300 packets collectively

In case of a triggered DAQ, such an event structure and the
packets therein would correspond to the data from one crossing

P

P

P

P

P

P

P

P

P
…

“Event”

PCFELIXDCMDCMDCMFEE

PCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

…

12

Example: Full Outer HCal Real Events

That’s one of the detectors that will survive into Detector 1
For us it’s subsystem #8, makes 32 Packets with IDs 8001 - 8032

$ dlist oHCal-00000100-0000.evt
Packet 8001 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8002 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8003 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8004 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8005 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8006 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8007 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8008 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8009 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8010 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8011 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8012 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8013 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8014 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8015 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8016 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8017 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8018 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8019 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8020 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8021 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8022 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8023 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8024 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8025 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8026 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8027 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8028 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8029 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8030 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8031 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8032 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)

P

P

“Event”

…

P

P

P

P

P

P

P2

…

Hitformat

13

oHCal Data

As a quick exercise, I took our oHCal events and made an Event Display

• Final packet access API

• What we are doing here (with cosmics)
will look (structure-wise) exactly like our
data next year

• People can work with the data for
calibration procedures, verify channel
mappings, interface F4A with the real
data structure, and on on and on

• (and yes, make Event Displays…)

Different Event

Streaming Readout and Packets

14

For streaming data, the “Packet” paradigm changes its meaning a bit
It becomes like a packet in the Voice-Over-IP sense - VoIP is chopping an audio waveform into
conveniently-sized chunks to transfer through a network

Packet Packet Packet Packet Packet

We are chopping the streaming detector data into conveniently-sized packets for storage
Here: Streaming sPHENIX TPC data (entire sPHENIX tracking system streams!)

$ dlist rcdaq-00002343-0000.evt -i
-- Event 2 Run: 2343 length: 5242872 type: 2 (Streaming Data) 1550500750

Packet 3001 5242864 -1 (sPHENIX Packet) 99 (IDTPCFEEV2)
$

14

Why do we call those “BufferBoxes”?

10/21/2020 15

15

The data rate at a collider is “bursty” – high luminosity at the
begin of a RHIC store, then ”burning off” – change of a factor
of 2

Also gaps in data flowing with collider dump/fill, access, APEX,
MD

This Buffer boxes allows us to deal with the average, rather than
the peak rate at the SDCC-facing “end”

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

100+ Gigabit
Crossbar
Switch

2016 (last PHENIX run)
beam intensity over a
week

Average

Data Reduction/Compression

16

Every detector obviously wants to minimize the data volume without losing physics information
Lossy: zero-suppression (threshold), clustering w/ threshold, etc
Zero-suppression is a must to avoid clogging up the front-end pipes.
However:
We can apply loss-less compression as a catch-all to offset compromises in threshold settings
Also, the early data are not as ”dense-packed” – development/learning curve requiring actual data
Set thresholds as low as the front-end bandwidth allows, let late(r)-stage compression do the rest
For 2 decades we have always applied late-stage, distributed compression to our raw data
(PHENIX/sPHENIX)
Distributed: happens at the EBDC stage
Rock solid, and even saves significant time at the reconstruction stage
(reading less data vastly over-compensates the small penalty for the decompression step)
Conceptually similar to compressed root files, but different/much faster compression algorithm

17

Buffer
Boxes (7)

LZO
algorithm

New buffer with the compressed
one as payload, header says so

Add new
buffer hdr

buffer buffer buffer buffer buffer buffer

LZO
Unpack

Original uncompressed buffer restored

This is what a file then looks like

On readback:

This is what a raw data file would normally look like (a buffer typically holds 10-500 events, e.g. 64MB)

All this is handled completely in the I/O layer, the higher-level routines just receive a buffer as before.

After all data reduction techniques (zero-suppression, bit-packing, etc) are applied, you
typically find that your raw data are still compressible to a significant amount
Our compressed raw data format supports a late-stage data compression:

Data Compression

Compressed data

18

The current ECCE test bench/test beam/etc data that we take are super-compressible
no or super-low occupancy, not zero-suppressed, etc
compression down to ~5% of the original, not typical for the “real” running

Expect a 40% value (compression by 60%) in the early going, going up to low 70%s
(One can think of this as a metric for the actual “information content per bit”)
Late-generation PHENIX raw data (2016, last run):

$ prdfcheck /data/phnxrc/1008/junk/hcal_lzo_00000100_0000.evt | more
buffer at record 0 length = 201799 25 marker = ffffbbfe LZO Marker Or.length: 4194208 4.81137%
buffer at record 25 length = 201304 25 marker = ffffbbfe LZO Marker Or.length: 4194264 4.79951%
buffer at record 50 length = 201424 25 marker = ffffbbfe LZO Marker Or.length: 4194264 4.80237%

$ prdfcheck EVENTDATA_P00-0000443135-0001.PRDFF | more
buffer at record 0 length = 3285885 402 marker = ffffbbfe LZO Marker Or.length: 4357160 75.4135%
buffer at record 422 length = 3064576 375 marker = ffffbbfe LZO Marker Or.length: 4349976 70.4504%
buffer at record 797 length = 3204863 392 marker = ffffbbfe LZO Marker Or.length: 4250952 75.3917%

Compression speed

19

“dpipe” is a swiss-army-knife utility to work with raw data. Take a file, uncompress, re-compress,
manipulate, etc etc. The file here contains 77524 events.

So 37µs per event and 3.5GBytes/s compression rate per thread

BTW – I keep a gzip-compression format around as a benchmark – this shows just how much faster LZO
is compared to gzip, for only a 10% additional improvement

$ time dpipe -sf -df -l EVENTDATA_P00-0000443135-0001.PRDFF EVENTDATA_P00_LZO-0000443135-0001.PRDFF

real 0m2.866s
user 0m2.354s
sys 0m0.507s

$ time dpipe -sf -df –z EVENTDATA_P00-0000443135-0001.PRDFF EVENTDATA_P00_gz_-0000443135-0001.PRDFF

real 6m58.935s
user 6m55.183s
sys 0m3.659s

$ ls -l /mnt/ramdisk/*
-rwxr--r-- 1 phnxrc phnxrc 10739654656 May 9 08:15 /mnt/ramdisk/EVENTDATA_P00_LZO-0000443135-0001.PRDFF
-rwxr--r-- 1 phnxrc phnxrc 9161973760 May 9 08:22 /mnt/ramdisk/EVENTDATA_P00_gz_-0000443135-0001.PRDFF

$ bc -lq
2.866 / 77524 * 10^6
36.96919663588050000000

77524 / 2.866
27049.54640614096301465457

Asks for LZO-
compression

Asks for gzip-
compression

20

A bit about my personal beliefs w.r.t. DAQ…

• During R&D/Tests beams/etc you should have a DAQ that is on the
evolutionary path towards the eventual system

• You want to be able to re-use (of course, still refine) the code and
experience you have gained with your detector in test beams and lab
tests

• This code very often evolves into the early online monitoring code and
later into the reco code

Case in point with sPHENIX:
• We have been using RCDAQ for all measurements, test beams,

detector calibrations, muon measurements, burn-in’s, etc etc
• Same access APIs, code base, applied algorithms
• Junior folk gain experience with what becomes the “real thing”

21

Why has the sPHENIX DAQ been important for the EIC and
ECCE R&D?
sPHENIX is one of the experiments paving the way for streaming readout in
our community
sPHENIX’s RCDAQ system has been a pillar of EIC-themed data taking for
R&D, test beams etc since 2013 – eRD1, eRD6, LDRDs, …

Estimated 25 active RCDAQ installations in the EIC orbit + ~30 elsewhere
Usual entry by ease-of-use for standard devices (DRS, SRS, CAEN, …) and
support for fully automated measurement campaigns

Minidrift TPC (2013)

FLYSUB consortium (2014)

ZigZag Readout (2016) PWO prototype (2018)

Dual-sided PWO readout (2017)

MPGD-LDRD (2019)

22

My personal first EIC R&D campaign
(Fermilab test beam, 2013)

Minidrift TPC (2013)Minidrift TPC (2013)

You can guess what DAQ system we were using…
We can analyze the data today exactly as we did then
Great training ground for students
Many more more EIC-themed R&D efforts since then, all using RCDAQ

Fly through the Detector!

23

We had the opportunity to fly a drone through the current installation with the outer Hcal and the
magnet…
Take a flight through the detector! Go to

https://www.phenix.bnl.gov/~purschke/Drone/cut01.mp4

https://www.phenix.bnl.gov/~purschke/Drone/cut01.mp4

Summary

24

Solid proposal that revolves around the concept of a Data Aggregation Module (DAM) and the existing
and rock-solid RCDAQ system
Today: DAM==FELIX (that cannot be built any longer)
Several projects to bring the “next FELIX” into the next decade under way or on the horizon
A modest amount of new ASICs for the front-ends (didn’t have time to talk about that)
Envisioned data rates/volumes manageable even by today’s standards
(off the cuff: that usually leads to great new ideas what to do with that bandwidth!)
Lots of support available for R&D-level DAQs (old eRDxes, 1,6,23,…) and new eRD108, eRD110, …

Backup

25

Streaming or not, here we come!

What I mean here is that past the FEE, the readout is completely
oblivious to the readout out mode – it doesn’t care how the front-end
arrived at the decision to send up the data.

Triggered or streaming, from the readout perspective they look the same

I have come to regard a particular feature of SRO as the defining
property, even if you ultimately trigger your front-end:

There is no synchronized end to a given event!
While “event” n is streaming, in other places, event n-1 (or -2, -3, -4…)
isn’t finished yet, and data from different crossings are interleaved

And that’s where the speed increase can be significant even for “classic”
systems

26

How do you deal with that?

You could throttle your event rate with busies to not let that happen:

27

“Events”

Or, if you insist on “event boundaries” in your data, you could buffer those event
fragments in DAQ memory, assemble them, then write out

Remember that you can often not “ask” a device to give you its data when it’s
convenient for you, you need to be ready to catch them as they come (e.g. network)
You have brought the event builder back, have to do it online, have to do it right the
first time…

Offline sorting streaming data into events/crossings

28

It then hands out per-crossing data:

A “streaming data” offline pool holds a number of crossings worth of data (like 1000) and
sorts them by crossing number (beam clock value)

As processed data (oldest crossings) get discarded, new data are inserted (high-and low-
water marks)

By doing that you relieve the DAQ from a lot of bookkeeping tasks. Faster! Safer!

29

Think of a test beam setup (or your Lab setup) for a moment

In the “real” experiment that’s running for a few years (think sPHENIX, ATLAS, what have you)
you are embedded in an environment that supports all sorts of record keeping

We have the PHENIX run database as an example – we log “everything”, AND there’s
infrastructure and support so most people know how to get at it.

I’m not disputing the need for a database, I’m saying that a test beam or your test lab needs a
different kind of “record keeping support”

What was the temperature? Was the light on? What was the HV? What was the position of that
X-Y positioning table?

A database allows you to search for runs with certain properties. But capturing this information
in the raw data file is more flexible and the data cannot get lost

I often add a webcam picture to the data so we have a visual confirmation that the detector is in
the right place, or something

A picture captures everything…

30

More about capturing your environment
Many times you capture things only “just in case”

You don’t routinely look at them in your analysis (such as cam pictures shown before)

But if you have some inexplicable feature, you can use the data to do “forensics”

Find out what, if anything, went wrong

The more data you capture, the better this gets

Think of it as “black box” on a plane…

I don’t have time to go through this in detail today; I have added a few backup
slides

the short version:

You can capture “meta data” at the begin of a run, at the end, or periodically (say, read
temperatures at he start, and the end, and every 120s)

31

“Meta Data” Packet list from a recent test beam

32

More than 72 environment-capturing
packets (accelerator params, voltages,
currents, temperatures, pictures, …)

Captured at
begin-run

Captured again
at spill-off

Forensics

33

“It appears that the distributions change for Cherenkov1 at 1,8,12,and 16 GeV
compared to the other energies. It seems that the Cherenkov pressures are
changed. […] Any help on understanding this would be appreciated.”
Martin: “Look at the info in the data files:”

$ ddump -t 9 -p 923 beam_00002298-0000.prdf
S:MTNRG = -1 GeV
F:MT6SC1 = 5790 Cnts
F:MT6SC2 = 3533 Cnts
F:MT6SC3 = 1780 Cnts
F:MT6SC4 = 0 Cnts
F:MT6SC5 = 73316 Cnts
E:2CH = 1058 mm
E:2CV = 133.1 mm
E:2CMT6T = 73.84 F
E:2CMT6H = 32.86 %Hum
F:MT5CP2 = .4589 Psia
F:MT6CP2 = .6794 Psia

$ ddump -t 9 -p 923 beam_00002268-0000.prdf
S:MTNRG = -2 GeV
F:MT6SC1 = 11846 Cnts
F:MT6SC2 = 7069 Cnts
F:MT6SC3 = 3883 Cnts
F:MT6SC4 = 0 Cnts
F:MT6SC5 = 283048 Cnts
E:2CH = 1058 mm
E:2CV = 133 mm
E:2CMT6T = 74.13 F
E:2CMT6H = 37.26 %Hum
F:MT5CP2 = 12.95 Psia
F:MT6CP2 = 14.03 Psia

More Forensics (my poster child why this is so useful…)

34

“There is a strange effect starting in run 2743. There is a higher fraction
of showering than before. I cannot see anything changed in the elog.”
Look at the cam pictures we automatically captured for each run:
$ ddump -t 9 -p 940 beam_00002742-0000.prdf > 2742.jpg
$ ddump -t 9 -p 940 beam_00002743-0000.prdf > 2743.jpg

35

All about automation

Everything in RCDAQ is a shell command…
One of the most important features. Any command is no different from “ls –l“ or “cat”

That makes everything inherently scriptable, and you have the full use of the shell’s
capabilities for if-then constructs, error handling, loops, automation, cron scheduling, and a
myriad of other ways to interact with the system

Nothing beats the shell in flexibility and parsing capabilities (of course you also have GUIs)

You can type in a full RCDAQ configuration on your terminal interactively, command by
command (although you usually want to write a script to do that)

In that sense, there are no configuration files – only configuration scripts.

This is quite different from “my DAQ supports scripts”!

I do not want to be trapped within the limited command set of any application!

As shell commands, the DAQ is fully integrated into your existing work environment

36

Measurements on autopilot through scripting

37

Calorimeter
Module

PMT

X-Y step motor

Light Fiber

You want to run measurements where you step through some values of a parameter completely on autopilot
Here: Move a light fiber with 2 step motors, take a run for each position w/ 4000 events
50 x 25 = 1250 positions (you really want to automate that)
Let it run overnight, come back in the morning, look at the data

The Script

38

25 positions in y

move the Y motor

50 positions in x

move the x motor

next x
next y

#! /bin/sh
STARTPOSX=0
STARTPOSY=9900
INCREMENTX=200
INCREMENTY=-200

CURRENTPOSY=$STARTPOSY

for posy in $(seq 25) ; do

quickmove.sh $CURRENTPOSY 2
sleep 5
CURRENTPOSY=$(expr $CURRENTPOSY + $INCREMENTY)
CURRENTPOSX=$STARTPOSX

for posx in $(seq 50) ; do

echo "moving to $CURRENTPOSX"
quickmove.sh $CURRENTPOSX 1
sleep 5

CURRENTPOSX=$(expr $CURRENTPOSX + $INCREMENTX)
done

done

The DAQ operation becomes an
integral part of your shell environment

Automatic end after 4000 events

start the DAQ

rcdaq_client daq_set_maxevents 4000

rcdaq_client daq_begin
wait_for_run_end.sh

39

GUIs

GUIs

• GUIs must not be stateful!

• Statelessness allows to have multiple GUIs at the same
time

• And allows to mix GUIs with commands (think scripts)

• (all state information is kept in the rcdaq server)

• My GUI approach is to have the GUI issue standard
commands, parse the output

• Slowly transitioning to Web-based controls (web
sockets + Javascript)

40

On my phone

Perl-TK

Web Browser

Run Control (all currently available front-ends)

41

Meet the Run Control Setup that can deal with our > 60 components

Timing System

42

The Local-
Level 1’s
provide input
to the GL1

Busy

FEMFEMFEMFEMvGTM

Granule

Busy

FEMFEMFEMFEMvGTM

Granule

Busy

FEMFEMFEMFEMvGTM

Granule

Busy

FEMFEMFEMFEMvGTM

Granule

LL1

LL1

LL1

LL1

GL1

…

The GL1
transmits clock
and trigger
decision to the
vGTMs

The vGTMs transmit clock
and trigger info to their
front-ends
They are aware of their
granule’s busy state

RHIC Clock

43

What’s in the raw data

Each readout electronics flavor (Digitizer, TPC-FEE/FELIX, INTT, MVTX) has a unique
way to embedding the BCLK
Example TPC:

64 bits

40 bits

20 bits

BCLK

Down to FELIX
(found in FELIX header)

Down to FEE
(embedded in FEE data)

The 20 bits FEE clock data (57K crossings, 17ms) allow us to check the internal
alignment of the 26 FEEs per FELIX, also delta within FELIX structure
The 40 bits (good for ~5 hrs) correlate the structure with the BCLK

44

FELIX-type readout

The vGTM sends this structure to the FELIXes:

The MVTX runs its on 40MHz clock, 2 clock values reported
The TPC embeds 20 bits, as explained
INTT – remains to be seen

6x BCLK == 6 words
per crossing
transmitted

40 bits BCLK
(BCO)

45

TPC data

Clock values embedded in FEE data

0000000 feee ba5e 0ff1 0001 7229 f7a0 0088 0004
0000020 002f 8782 0004 ffff 0081 0000 0050 0050
…
0001020 d72c 0081 feed 0000 0088 3e2b 0004 feed
0001040 000f 0088 9f7a 0000 0000 0007 ffff 58af
…
0002100 0088 ad79 0004 feed 0017 0088 9f7a 0000
0002120 0000 000f ffff 58af 0081 0008 0000 ffff
…
0004740 0004 feed 0027 0047 0088 9f7a 0000 8782
0004760 0000 0004 001f ffff ffff 58af 0000 0000

FELIX Hdr

FEE structures

Clock values

bx 9f7a0
bx 9f7a0
bx 9f7a0
bx 9f7a0
…

Current hardware

46

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

… and the switch and the “Buffer Boxes”

47

DCMDCMDCMDCM2
SEB

SEB

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

EBDCFELIX

EBDCFELIX

EBDCFELIX
Buffer Box

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

100+ Gigabit
Crossbar
Switch

JBOD enclosure

JBOD = “Just a Bunch Of Disks”

102 14TB disks, ~1.5PB raw disk space

~ 1.2PB usable after RAID etc

6 BBs -> 7PB disk space

Connection to offline computing

48

Pretty standard GRID/distributed computing paradigm

