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ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt
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vast amounts of data
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networks learn from \
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Overview

Mission:

* Provide world-class data science solutions to advance research in nuclear physics by working
with the subject matter experts at Jefferson Lab, partnering Universities and Labs, and the

Department of Energy.

* Provide world-class data science solutions to scientific applications relevant to the regional
scientific community

Vision:
« Expand the capability and capacity of data science at JLab

 Create a collaborative data science research hub to:
1. Provide world-class solutions to scientific challenges
2. Provide real-time optimization solutions for complex operational instruments
3. Champion education and research opportunities with regional Universities and industry
4. Reduce the carbon footprint by optimizing the data science workflow and algorithms
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Overall Goals:

FY22 LAB S&T Agenda, Milestones — Data Science & Al/ML

FY22:

Establish a data science priority research needs and data availability
for JLab:

+ Experimental Halls, Theory, Accelerator, and Facilities

Establish JLab as the data science hub for nuclear physics
and regional scientific applications

Develop a core capability targeting key elements of the Basic

Research Needs (BRNs) defined in the SciML report, etc. « Establish collaborations with regional universities and national
, _ » _ laboratories
Provide education and research opportunities to regional
universities and industries » Develop core capabilities:
— Infrastructure:

« Evaluate latest SOTA workflow tools for data science

Yearly Activities and Milestones:

» Evaluate datasets and model repositories
Participate in HEP, NP, ASCR, and SciDAC proposal calls

" . « |dentify/evaluate needs for digital twin
(expand as opportunities become available)

— Methods & Algorithms (addressing the needs of the SciML BRN):

Participate in DOE data science related workshops and BRN . Expand capability in ML-based uncertainty quantification

reports techniques
Continuously reevaluate based on State of the Art (SOTA) - Develop interpretability techniques
Expand scientific applications and collaborations » Expand optimization research for design and control
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* Potential Applications:
— Clustering and Particle Identification
—Anomaly/similarity detection/prediction
— Calibration

—Design and control
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‘ GlueX FCAL Cluster Identification R. Barsotti and M.R. Shepherd 2020 J/N;-TI:':\F;)zm

. Separation of electromagnetic and hadronic interactions (i.e., low energy vs split-
offs) in the GlueX forward calorimeter (2800 lead glass modules)

e  Algorithm trained on using w—>mitn%(yy) meson decays which contain both true
photons and charged particles interacting with the calorimeter
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Understand what your model knows and doesn’t know

Anomaly Type #1 Anomaly Type #2

Cla XP obability, Deterministic Model Predictive Uncertainty, Deterministic Model

Different method yield vastly different classification

predictions, some examples:
— Deterministic 0 | 18
—MC Dropout } )
—Deep Ensemble . ) N

— Gaussian Processes Anomaly Type #3
- Bayesian Neural NetWOrkS Class Probability, MC Dropout 2(Normalized)Predictive Uncertainty, MC Dropout 15
- Different models architectures can yield better :
results if you do not know all classifications : -1
Class Probability, GP %6 (Normalized) Predictive Uncertainty, GP 15 - ’
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Particle identification for SoLID with uncertainty quantification

Test Set ROC curve with uncertainty band

Lo : ;
» The initial goal was to achieve >95% 125001 8 Lo ,«/ L
pion efficiency while keeping false 100001 El ] R
positive below 5% 8 ] ]
5 75007 g s
 Distance aware model provides & — 14 ,,,,,,,,,,,,,,,, o b i scaon |
uncertainty values associated with each 5 |
OUtpUt 25001 g L ‘ """""""""""" # Train set AUC:0.9907 -
- . - i [ Val set AUC:0.9884
» Performing hyper parameter 0'3.%‘ 02 04 06 08 10 Seb" | e
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Leveraging similarities to identify anomalies

Problem definition:
* Predict anomalous pulses before they happen

Proposed solution m@ BELE
- We are using a Siamese model since we want to focus on the : \
similarity between a reference pulse and the current pulse o oo Ny vy O
- Siamese model does not explicitly model the classification but focuses ] / sty
on the similarities E—*E—’ |
- We enhanced our Siamese model by adding a GP layer that provides J "
an uncertainty estimate o
Class Probability, Deterministic Model Class Similarity, Deterministic Model . input: | [(None, 80000, 1)] ) input: | [(None, 80000, 1)]
o0 0 input_2: InputLayer output: | [(None, 80000, 1)] input_3: InputL.ayer output: | [(None, 80000, 1)]
Class A | Similar | \ . /
ﬁ 0.8 ﬁ 0.8 Res1D: Functional input: | (None, 80000, 1)
11 11 : !W? output: | (None, 157)
°° f o FewShotDiff: Lambds input: | [(None, 157), (None, 157)]
01 01 WSROI Lambda output: (None, 157)
] = dropout_1: Dropout input:_| (None, 157)
Class B oo Not similar - output: | (None, 157)
FewShotEncoding: Dense input: | (None, 157)
0.0 0.0 - output: [ (None, 1)
Completely miss identified the out Correctly identified as different
of domain sample. from the reference data =,
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Uncertainty quantification for accelerator pulses

Results

The similarity model has ~4x better performance than published classification model
The ROC curve shows nearly the same level of performance (not optimized)

We introduced an out-of-domain anomaly, labelled 1111 (red), the UQ-based

model correctly identified the anomaly and indicated high uncertainty.
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Online monitoring for system changes and anomalies/similarities

» Real-time ML-based techniques for monitoring and system change identification
» Real-time calibration using multi-model data sets
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Trying to interpret the model

* We are exploring techniques such as Gradient Class Activation Map

(GradCAM).
« This enables us to ‘see’ important activation regions in the model. | RO o T it et ".ill I |"'I::l'|""‘ n |,|\
b i tjreeiag R |"| ||"I AR ,m |I\|w ul
« These results tell us the regions in the data that are most relevant when ©-3 di',:i'd‘ Ill i | i II|'!"I ""' l"' l"'l“ll |||“:|"|I |.|l|! il |"|| I!.‘l | | |
distinguishing normal and abnormal operations conditions. i |. h m: ::" u||||li"I| " Im.ll ||| |||'|I|| “I i “||||||Hm |’|| |\!!|’ |’|| ' i
. . . 0.02 - ||. ] [ Ml 1 I ||I LT
« It also allows us to reduce the input data size which reduces the ll; ||| |'l| ||\ ||", "||’||||| [l h" ”h'!!ﬁ"“ I ||||' i| || || l ||I|||| I .
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Data science tools for experiment control and calibration

Scientific Achievement

An data science system to calibrate and control the GlueX
Central Drift Chamber (CDC).

Significance and Impact

The Gaussian Process Regression using atmospheric
pressure and CDC specific features. The data science
system recommends anode voltages and calibration values
for the detector in response to changing pressure.
Controlling CDC anode voltage stablilizes the response of
the detector throughout the duration of the experiment and
reduces the calibration efforts required afterwards.

Research Details
— Developed by team of Data Scientists and Physicists

— The system uses detector specific and environmental
measurements as input features to Gaussian Process
Regression model to predict calibration values and
determine voltage settings throughout the experiment.

— Shift takers can accept or reject the voltage
recommendation.

— Successfully implemented during PrimEXx run period.

— Understanding systematic and model uncertainty is in
progress.

— Application to other detector systems at the Lab in progress.

12
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Top plot: Schematic of the data science system. Bottom plot: CDC Gain Correction
Factor with GP-tuned (orange) and constant (blue) high voltage. Black line is target
gain. Using the tuned HV settings produced less variation in the Gain Correction
Factor compared to constant HV running conditions.
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Autonomous Control:
Reinforcement Learning for Accelerator Control at FNAL

Problem definition: m Vw A
Reduce beam losses in the FNAL Booster by developing a A T (I
Machine Learning (ML) model that provides an optimal set of VLK e
actions for accelerator controls i ‘t
Approach: Eons
Developed a surrogate model and a ‘:
reinforcement learning policy model for ACTION e :"4 ——~ Data Rolling Total Reward 1
online control system — e
Results: #
The current Al based controller provides Q e A ,M .
~2X improvement. woione ENVIRONMENT SRR AL\ 1 %n.ﬁ iy
| L R A g YT
— STATE, REWARD 1# UV Wﬁ.\{ﬂ‘nﬁg' ;
N - R G
p abort ;‘\\p‘(seew :) CDF detector ‘,‘g ? .
ety . 2 NG e e
co= 3 S Sl e
13 Jefferéon Lab

o—

Coiirtecv: Chrictian Herwio



Example of integrated data science analytics workflow

- Digital Twin
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Autonomous experimental monitoring, anomaly detection/prediction, and control

o

Best or Hierarchical Agent

é

ENVIRUNMENT

'

Digital Twin

Physical Object

Digital Object

111

Analytics

Traces, etc.

Run simulations

ACTION ACTION
° g0l &
Agent #2 ENV|RU|||MENT Agent #1
L L
STATE, REWARD STATE, REWARD

Monitoring & Anomaly Detection
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 New Data Science department (~6 months)

 Multiple internal meetings to identify areas where data science can improve the scientific
mission

« Multiple external meetings to identify areas for new collaborations with regional universities and
laboratories

« Building a core infrastructure to improve efficiency, reproducibility, and collaborations across
divisions

. BuiI?ing core technical foundations to address identified needs within the DOE scientific
portfolio

We look forward to having more detailed discussions with Hall C

JefferSon Lab @cEnNERGY Soo A
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* Develop core capabilities:
— Infrastructure:
*Setup data science software repository and best practice
- Evaluate/implement datasets and model repositories

18 Jefferson Lab



Developing a production data science infrastructure for NP and beyond

« Software repository:

— Create a collaborative environment and shared knowledge

— Reusability of common algorithms and tools
— Better overall efficiency

e Unit test:

— Ensures that all code blocks work as designed, captures code

complexity, enables continuous integration

« Continuous integrations:

— Ensure that new changes in the package are tested and identifies

issues early in the development cycle

Travis Cl

GitHub

19

Inverse Problem/notebooks updated SciDAC toy notebook
cpp adding new SNGP model notebook and confirming editngs to pi&m...
suf_sns Add Mahalanobis distance

[ .gitignore gitignore updated

[ README.md Update README.md

[ environment.yml Remove tensorflow from conda setup file.

Y setup.py Initial setup

:= README.md

Data Science Toolkit O GitHUb

Software Requirement

e Python 3.x
« Additional python packages are defined in the setup.py

« For now, we assumes you are running at the top directory
Installing

e Pull code from repo
git clone https://github.com/JeffersonLab/jlab_datascience_ml.git
* Dependencies are managed using the conda environment setup:

cd jlab_datascience_ml
conda env create -f environment.yml
conda activate jlab_datascience_ml (required every time you use the package)

« Install Data Science Toolkit (via pip):

pip install -e .



Across JLab: ML reEositories

« JLab scientists are developing a lot of ML models from scratch

« There is currently no central system to capture models and artifacts or to find pre-existing models

« There is an opportunity to improve productivity and reduce the labs carbon footprint

« JLab needs a common repository to capture the ML provenance for all models used for operations, etc.

» We are currently evaluating www.mlflow.org as a service to satisfy this requirement

MLflow Tracking [MLflow Projectsj MLflow Models MLflow Registry

! : | :

Package data

Record and query science code in a Deploy machine Store, annotate,
experiments: code, format to reproduce learning models in discover and.
data and results. runs on any diverse serving manage models in a
platform environments central repository )



http://www.mlflow.org/

Across JLab: Dataset

Sharing datasets can provide insights in their commonalities

JLab has a lot of datasets that can be shared for algorithm development

We are working to develop a private collection of JLab specific datasets that

will allow us to easily collaborate and quickly evaluate algorithms

0

Open Source framework for
large-scale digital repositories

We are currently exploring https://inveniosoftware.org/

INVENIO

Powering Open\Science

0

Turn-key Research Data Management repository

21

LILS

Integrated Library System

Datasheets for Datasets

TIMNIT GEBRU, Google

JAMIE MORGENSTERN, Georgia Institute of Technology
BRIANA VECCHIONE, Cornell University

JENNIFER WORTMAN VAUGHAN, Microsoft Research
HANNA WALLACH, Microsoft Research

HAL DAUME 11, Microsoft Research; University of Maryland
KATE CRAWFORD, Microsoft Research; AI Now Institute

The machine learning community currently has no standardized process for docu-
menting datasets, which can lead to severe consequences in high-stakes domains. To
address this gap, we propose datasheets for datasets. In the electronics industry, every
component, no matter how simple or complex, is accompanied with a datasheet that
describes its operating characteristics, test results, recommended uses, and other infor-
mation. By analogy, we propose that every dataset be accompanied with a datasheet
that documents its motivation, composition, collection process, recommended uses,
and so on. Datasheets for datasets will facilitate better communication between dataset
creators and dataset consumers, and encourage the machine learning community to
prioritize transparency and accountability.

Z2N0do

BOOSTR: A Dataset for Accelerator Control
Systems (Partial Release 2020)

© Kafkes, Diana; @ St. John, Jason

BOOSTR (Booster Operation Optimization Sequential Time-Series for Regression) was created to provide cycle-by-cycle
time series of readings and settings from instruments and controllable devices of the Booster, the 15~Hz Rapid-Cycling
Synchrotron (RCS) at Fermilab. We are preliminarily releasing one day of it in the hopes that it— and future versions of it—
can be used as a dataset to demonstrate other aspects of artificial intelligence for advanced control systems. For more
information, please see our accompanying Datasheet.

Preview v

1 06 — 4+ AutomaticZoom:

BOOSTR: A Dataset for Accelerator Reinforcement Learning Control

Diana Kafkes, Jason St. John
Particle Physics Division & Accelerator Division
Fermi N Accelerator Laboratory
Batavia, IL 60510, USA

L WHAT IS A DATASHEET? B. Has the dataset been used already? If so, where are

delincated by T. Gebru et al. in for
arXiv:1803.09010v7, 202003/19[1). The g
here are the ones listed in that paper.

I1. MOTIVATION FOR DATASHEET CREATION

fferéon Lab


https://inveniosoftware.org/

Developing a Data Science priorities to support JLab
science:

* Experimental Halls and Theory

 Accelerator and Facilities

22 Jefferson Lab



Al/ML in Physics and Theory Division

Monday 26 Jul 2021, 12:00 — 19:45 uUs/Eastern

& David Lawrence (Jefferson Lab), Malachi Schram (Thomas Jefferson National Accelerator Facility)

- Al Townhall (July 26th 2021)

—EPSCI (lead) and Data Science Dept.
(contributed) to the second Al/ML Townhall to
review the current activities in the
experimental halls and theory.

Description Live notes:

https://docs.google.com/document/d/1ijlhohSAc9pLmCJIwpMKK|j4VIFYLEtMXG20WRM58W7eU/edit?usp=sharing

LK — 14:10

Welcome
Speaker: David Lawrence

[A 2021.07.26.ALTow.. & Google Slides

LR — 14:15 Deeply Learning deep inelastic scattering kinematics Osm | 2~
Speaker: Markus Diefenthaler

» Numerous follow-up meetings with each
experimental hall. Some initial ideas for
collaborations:

RUREN - 14:20 INTRA-ASTRA Osm | L2~
Speaker: Markus Diefenthaler

@ Diefenthaler-AlTown...

— Hall A: Osm (£-
« SoLID tracking and particle identification e A, osn (£
- Hall D: GEMTRD-ML_Jul20...
» CPP particle identification B i o [2-
. . A MLFPGA_TownHall_.
« Calibration | — -
* Anomaly detection B
- Theory [YOTE - 14:45 Exp.Cor\troIsusIngAF Osm [ 2~
Some common needs have been identified Biens
ALX LM — 14:50 Track ID for Clusters Osm | L2~
LR — 14:55 De-noisingDrift Chamber using A ders Osm | 2~

Speaker: Gagik Gavalian
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Hall E (EIC)

» AI4EIC Workshop (Sept. 7-10t)

— Data science dept. participated in the first
Al focused workshop for EIC covering:

» Accelerator and Detector Design

« Simulations

 Reconstruction and Analysis

* Accelerator and Detector Control A TUESDMSEPTEMBER

« Detector Readout R e B s P it Bl

(A AuEIC_Introduction
Computing Frontiers

EIC Overview and Schedule
Speaker: Rolf Ent

AI4EIC_EIC_Overvie

Real-time Al tracking and tagging ﬂ

* No definitive research plans have been —_— s
developed but will resume now that the e St SN
detector proposals are done

, Malachi Schram

Accelerator and Detector Design: Introduction
Speakers: Friederike Bock , Malachi Schram

Accelerator Overview
Speaker: Todd Satogata

_f A

2021-09-07-AMEIC-

24 J )/ff.e'r{on Lab



Al/ML in Accelerator Division

Al Townhall (Nov. 12t 2021):

— Accelerator division (lead) and Data
Science Dept. (contributed) to review
the current activities

— Contributed several talks

» Co-lead a LDRD proposal on MORL for
CEBAF with accelerator division

— Project started Q1 FY22
» Contributed to STTR proposal

* Initiated data science bridge position with
ODU with a focus on accelerator physics

— Position now open

25

13:00

14:00

15:00

Welcome and Introduction

(Click on Go to Map for Bluejeans connection), BlueJeans
Al for Sparse-to-Dense Mapping of Site Radiation Dose
(Click on Go to Map for Bluejeans connection), BlueJeans
LLRF DAQ for Al/ML

(Click on Go to Map for Bluejeans connection), BlueJeans
SRF Cavity Instability Detection

(Click on Go to Map for Bluejeans connection), BlueJeans
C100 Fault Prediction

(Click on Go to Map for Bluejeans connection), BlueJeans
Uncertainty Aware Anomaly Detection for SNS

(Click on Go to Map for Bluejeans connection), BlueJeans

Reinforcement Learning for Accelerator Control for FNAL

(Click on Go to Map for Bluejeans connection), BlueJeans

Multi Objective Optimization of Cryogenic Heat Load and Trip Rates

(Click on Go to Map for Bluejeans connection), BlueJeans

Global Orbit Locks

(Click on Go to Map for Bluejeans connection), BlueJeans

Field Emission Management

(Click on Go to Map for Bluejeans connection), BlueJeans

Thoughts to Improve the Performance of Polarized Electron Sources by Al/ML

(Click on Go to Map for Bluejeans connection), BlueJeans

Smart Alarm for the CEBAF Injector
(Click on Go to Map for Bluejeans connection), BlueJeans
Graph Analytics for CEBAF Operations

(Click on Go to Map for Bluejeans connection), BlueJeans

Semi-Autonomous Mobile Diagnostic

(Click on Go to Map for Bluejeans connection), BlueJeans

Christopher Tennant e
13:00 - 13:15

Adam Stavola @
13:15 -13:23

Rama Bachimanchi &
13:23-13:31

Dennis Tumner &
13:31 - 13:39

Lasitha Vidyaratne @
13:39 - 13:47

Malachi Schram @
13:47 - 13:55

Malachi Schram &
13:55 - 14:03
Kishan Rajput
14:03 - 14:11

Adam Carpenter e
14:11 - 14:19

Adam Carpenter e
14:19 - 14:27

Shukui Zhang @
14:27 - 14:35

Christopher Tennant @
14:35 - 14:43

Christopher Tennant @
14:43 - 14:51

Christopher Tennant @
14:51 - 14:59



AIEC: Using ML to Predict Calibrations for the Central Drift Chamber in GlueX

Objective: " . .
Initially Trained using GlueX 2020 data

Predict and/or adjust the controls of a sensitive detector to reduce or
eliminate the need for calibration, i.e., Maintain consistent detector
response to changing environmental/experimental conditions by

Training variable used: Atmospheric pressure, HV board current, CDC gas temperature
from previous minute to predict HV needed to produce relative gain.

adjusting CDC HV Raw GlueX 2020 data:
. 0.18

Current SOTA: . Ty : , T

. 17 R 3 e ] )
Sensitive detectors need to be calibrated to obtain optimal resolution gorer i [ A T

c 0.15 R * H = $ SREerd s

o i a3 G 2 o o B8 ¢ :

W : . 2 : i Wy ¢

Calibrations cause a delay between data collection and analysis o014 Y : AN :
(months) 5013 ¢ ;

£0.12 .

. . . . . o
. Requires multiple iterations are needed to converge to final set of 0.11
constants 0.10 71500 71750 72000 72250 72500 72750 73000 73250
Run
. MONTHS of time for traditional calibration using reconstructed .
data 9 Calibrated results for test data set:
Proposed approach: ) ' ) ' ) Prsiction With Eror Bar
Used Gaussian Process Regression to predicted the desired £
calibrations and estimate the prediction uncertainty using environmental “§
data to accelerate time to complete. Er:
O 0145

Targets: existing Gain Correction Factor (GCF) from GlueX 2020 run
period ' ? * Run ? ¢

GPR based results are consistent to the baseline approach.
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AIEC: Calibrations with ML: Gain with PrimeX-n

Once the model was training using

GlueX dataset, we provide
corrections to the new streaming
PrimeX-n data for the shifter to

ent, and standard pressure
apply.

Shift takers approve and
adjust HV before starting
new run

Default to standard 2125 V for empty
target runs

Run Al before each run

Use input features from EPICS for

previous minute while beam current is
steady. Use Al predictions to determine
HV needed to produce relative gain

Figure illustrates good agreement between the baseline and the GPR approach.

And it appears changing HV stabilizes relative gain.

0.18
0.17
0.16
0.15
0.14

rrection Factor

81500 81550 81600 81650
Run

27

- Conventional

-2

Jefferson Lab



Hydra

Problem definition:

Detectors are complex, and delicate, the enormous amount of data Y Hydra was originally developed by

generated by them are needed to be monitored to make ensure the
quality of the physics research. Manual monitoring is tedious task
and does not provide the granularity and efficiency as machine.

Solution (Hydra)

28

Thomas Britton, a post-doc in Hall-
D, with the help of off-the-shelf ML
techniques (Inception-V3 model)

O Enhanced/put in production by
the EPSCI group with Data
Science Depit.

O It has detected some of the issues
that were missed by the detector
experts.

O Future plan:

O Enable diagnosis. (Instead of
just saying "good" vs "bad", it
would be able to point out
possible issues in the detector)

O Enhance the prediction
capability and convert it into a

toolkit for wider usag
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Autonomous Control:
Multi-Objective Optimization of Cryogenic Heat Load and Trip Rates

Problem definition: ® Generic toolkit to use at other

Optimize heat load and trip rate in CEBAF by setting optimal SRF based DOE facilities with

gradients in the SRF cavities similar challenges

Proposed solution: ® Making toolkit applicable to

Explore the use of modern techniques such as reinforcement other multi-objective

learning to provide optimization solution optimization problems in other
domains

® Develop a digital twin of CEBAF
LINACS that can further
be utilized for future projects

A surrogate model - :
for each cavity with Digital Twin of

uncertainty CEBAF linacs
guantification

Historical

ACTION ACTION
XSET OPTIMIZED GRADIENTS |

STATE, REWARD @

’o\ \E’%/ ' @ #
&5( AGENT ENVIRONMENT
u AGENT |

-
30

T

STATE, REWARD
Calibrate/monitor online
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HVCM Anomaly Detection at ORNL

* Problem Definition
— Investigate the possibility 012

voltage converter modules
« Approach

— Autoencoder based anomaly detection scheme. Develop a 1D

CNN variational autoencoder (VAE) capable of re-constructing
multiple signals from HVCM modules

* Preliminary Results

— With limited number of examples from an HYCM module, the

VAE can identify approximately 60% of anomalies at 10%
(acceptable) false positive rate

predicting anomalies in the high
HVCM) using ML techniques
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Establish collaborations with others

* Regional Universities
 National Laboratories
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Establish collaborations with regional universities

» Old Dominion University
— They submitted a proposal for the CST bridge position proposal call
— Proposal was accepted and we finalized the MOU
» Faculty position on data science for accelerator physics is open
— Started a new data science project with the ODU Virginia Modeling, Analysis, and Simulation Center

— Currently establishing a research associate professor position within ODU VMASC

* William & Mary
— They submitted a proposal for the CST bridge position proposal call
— Proposal was accepted and we finalized the MOU
» Faculty position is open and they will start reviewing applicants early calendar year

— Currently establishing two affiliate faculty positions

« University of Virginia:
— Submitted a capstone proposal which was accepted

— Students are working on anomaly detection for accelerators
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Establish collaborations with regional universities

* New project titled “Hampton Roads Digital Twins”

» Collaboration between Jefferson Lab and Old Dominion University (ODU) designed to leverage separate
and complementary scientific expertise to find an innovative approach to address the health inequities of
the Hampton Roads region.

» Benefits/Impacts:

— General: Data science could provide new techniques to address public health issues which would be a
paradigm shift in how data is used for public health research. Additionally, this effort will establish a
vision and direction for a partnership between JLab and ODU/Virginia Modeling, Analysis, and
Simulation Center (VMASC)/Hampton Roads Biomedical Research Consortium (HRBRC).

— To ODU: This project will establish a partnership with JLab to provide a data science program in public
health. JLab will provide expertise in data science methods used to address targeted public health
research efforts.

— To Jefferson Lab: This project will establish a partnership with ODU/VMASC/HRBRC focused on public
health and the new NIH strategic plan. This project will provide new opportunities to expand the data

science department portfolio. -
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Establish new collaborations with national laboratories, etc.

» High Energy Physics (HEP) program:
— “Real-time Artificial Intelligence for Accelerator Control”
« Partner: JLab and FNAL
» Led the offline surrogate model and reinforcement learning effort
» Advising on updates to the surrogate model and reinforcement learning in preparation for online deployment
* Two published papers and one conference talk

» Advanced Scientific Computing Research (ASCR) program:
— “Data-Driven Decision Control for Complex Systems”
» Partners: JLab, ORNL, PNNL, Arizona State University, University of California
» Leading the Reinforcement Learning Thrust

» Basic Energy Science (BES) program:
— “Machine Learning for Improving Accelerator and Target Performance”
* Partners: JLab and ORNL
» Leading data science and machine learning efforts for specific application
» One published paper, one submitted, and two conference talks

« Small Business Technology Transfer (STTR) program:
— “Precise Control of Particle Orbit in Accelerator using Machine Learning Technology”
» Partners: JLab, Raytum Photonics, and University of Washington
* In review
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Example: Machine Learning Grant from BES

Collaboration between SNS, ORNL, and Jefferson Lab.

1) Develop ML capabilities for time series analysis and prediction:

a) Use unsupervised and semi-supervised learning with existing data to develop ML models
with multiple timescales to predict failure scenarios.

b) Develop ML-based anomaly detection capabilities for accelerator operations.

c) Develop Uncertainty Quantification (UQ) capabilities for robust and reliable time-series
analysis.

d) Develop causal analysis capabilities relating failure predictions and anomalies to sensor
measurements and system operating parameters.

2) Demonstrate Objective (1) on accelerator and target systems to monitor condition, detect
anomalies, and predict failure, using information from system instrumentation and beam-based
signatures.

3) Demonstrate ML-based surrogate modeling to optimize parameters and inform design choices.
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