Compact Photon Source, An Update

Gabriel Niculescu James Madison University

2022 Hall C Collaboration Meeting, JLab (still virtual)

February 18, 2022

イロン イボン イヨン イヨン

3

Outline & Disclaimer what? why?

how?

Introduction

Time permitting, I shall talk about...

- CPS: what? why? how? (intro/refresher/memento)
- CPS: Design & Optimization
- CPS: Ongoing work.
- Summary & Outlook ("Quo Vadis, CPS?")

Disclaimer ... as usual:

- Lots of ppl contributed to this talk.
- ...and they've done their level best! (and are credited here
- Any mistakes/misrepresentations/mis-anything are purely mine!

Outline & Disclaimer what? why? how?

Enter CPS

what ... is CPS?

- ...as proposed in 2014 (BW)...
- CPS: Compact Photon Source; novel untagged $\vec{\gamma}$ source design.

what ...might it be used for?

- low cross-section γ -nucleon interactions (such as high s, t WACS)
- narrow photon beam (good 4 identifying exclusive reactions)
- optimized for work w/ polarized NH3-type targets
- high intensity* (\sim 30imes better than alternatives)

Specs? Power: 30 kW Radiator: 10% rl Beam size (@ 2 m): ~1 mm Lifetime (est.): 1000+ h Gabriel Niculescu James Madison University CPS 2.0

Outline & Disclaimer what? why? how?

(ロ) (同) (目) (日) (日) (日)

How? CPS Concept

4/21

- Traditional γ beam approaches?
 no hermeticity. large. \$\$\$. ("Thank you, next")
- Idea: Use the magnet* both as a beam-shaping and beam-dump device, *ergo*, problem is solved! **How**?

Outline & Disclaimer what? why? how?

mini–Summary

Based on what you've seen thus far... CPS...

- high intensity, untagged, polarized photon source
- narrow beam, compact (in x-y-z space). good for pol. target work.
- suitable for low cross–section γ –nucleon (exclusive) reactions

To actually hope to build it... Design & Optimization

- radiation & heat mitigation.
- compactness (in \$\$\$ space). weight too!
- advertise it! (more physics, followers, and (hopefully) funding!)

Then we put it in the hands of the engineers...

• tidy up design.

- coil design & fabrication. ditto for center piece, inner section, support.
- shielding procurement & stacking.

Simulation (GN: G4 & FLUKA): Shielding & Cost Simulation: Power Deposition & Heat Dissipation Dissemination & advertisement

Is it safe to use? How about cost & weight?

Simulation

- ...fields, shielding mats.
- prompt/activation dose
- power deposition
- substantial savings in weight and \$\$\$

... safe to operate.

Simulation (GN: G4 & FLUKA): Shielding & Cost Simulation: Power Deposition & Heat Dissipation Dissemination & advertisement

Power deposition in the Central Piece

Simulation details...

- 0.5x0.5x5 mm grid
- available as df or param.

Heat Dissipation

- Bogdan: analytic calc.
- GN: 2D simulation
- Amy, Steve: 3D (ongoing)

8/21

Introduction Simulation Design & Optimization Ongoing Efforts Disseminat

Simulation (GN: G4 & FLUKA): Shielding & Cost Simulation: Power Deposition & Heat Dissipation Dissemination & advertisement

) 역 (아 9/21

CPS knowledge dissemination

tell the world ...

- CPS concept, design, and simulation results, expected performance, usage, lifetime ... published in NIM, 2020
- also workshops, conference & other professional meeting presentations.

Nucl.Instrum.Meth.A 957 (2020) 163429

A Conceptual Design Study of a Compact Photon Source (CPS) for Jefferson Lab

D. Day,¹ P. Degtiarenko,² S. Dobbs,³ R. Ent,² D.J. Hamilton,⁴ T. Horn,^{5, 2, 1} D. Keller,¹
C. Keppel,² G. Niculescu,⁶ P. Reid,⁷ I. Strakovsky,⁸ B. Wojtsekhowski,² and J. Zhang¹ ¹University of Virginia, Charlottesville, Virginia 22904, USA
²Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
³Florida State University, Tallahassee, Florida 32306, USA
⁴University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
⁵Catholic University of America, Washington, D.C. 20064, USA
⁶James Madison University, Halifax, Nova Scotia, Canada
⁸George Washington University, Washington, D.C. 20052, USA (Dated: December 17, 2019)

Simulation (GN: G4 & FLUKA): Shielding & Cost Simulation: Power Deposition & Heat Dissipation Dissemination & advertisement

Timelike Compton Scattering off transversely polarized proton

C12-18-005

PAC 48, August 13th, 2020

Marie Boër (VT), Dustin Keller (UVa), Vardan Tadevosyan (ANSL), et al.

Proposal for Hall C, with NPS and CPS collaborations

(credit: M. Boer¹ et al)^{10/21}

Introduction Simulation (GN: G4 & FLUKA): Shielding & Cost Design & Optimization Ongoing Efforts Dissemination & advertisement

TCS (II)

Introduction Simulation (GN: G4 & FLUKA): Shielding & Cost **Design & Optimization** Simulation: Power Deposition & Heat Dissipation **Ongoing Efforts Dissemination & advertisement**

TCS (III)

Timelike Compton Scattering

Why measuring TCS off a transversely polarized proton?

- Unique access to GPD E of the proton
- GPD universality studies (TCS vs DVCS)
- (credit: M. Boer et al) · Independent observables for GPD data sets and global fits in valence region
- Most knowledge on GPDs from DVCS: complex conjugate TCS access same information Gabriel Niculescu James Madison University **CPS 2.0**

 Introduction
 Simulation (GN: G4 & FLUKA): Shielding & Cost

 Design & Optimization
 Ongoing Efforts
 Simulation: Power Deposition & Heat Dissipation

 Dissemination & advertisement
 Dissemination & advertisement

CPS in EIC era

CPS as a e^+e^- source

- Shed light (!) on the TPE size
- 15x more productive than similar Hall B effort (2 × 10¹⁰ e⁺/s)
- Reduced systematics: non-magnetic calorimetry
- Rates @Q² = 3GeV²: 0.5/2.5 Hz (~500 h)
- BSM studies possible (dark photons, etc.)

(credit: DM et al, Hall C Future Whitepaper...)

3D Heat Modeling Magnet Design & fabrication Procurement.

Heat Modeling (credit: Amy C., Steve L. ...)

3D Heat Modeling Magnet Design & fabrication Procurement.

Coil design & fabrication (credit: Steve, Bert ...)

Coils

- Discussion w/ potential vendor NEC/Tokin
- Prototype drawings in process of being signed off for fabrication.
- Design work on CPS/shielding platform and hall layout.
 - Continuous Wound Option Less splices/joints

		JLAB	TOKIN	JLAB	TOKIN	
		Luvata #6801	Luvata #6801	Luvata #8289	Luvata #8289	
NI (A.Turns)		42,000	42,000	42,000	42,000	
Current	A	764	764	764	764	
Voltage	v	14.1	11.2	21.2	10.5	
resistance	mOhms	18.5	12.3	27.8	11.3	
Power	kW	10.8	8.6	16.2	8	
tums		56	55	56	55	
weight	kg	102.2	91.8	116.4	70.5	
Weight/L	kg/m	0.90	0.90	1.02	1.02	
Length	m	113.59	102.00	114.33	69.25	
Flow Rate @ (150psi)	L/min	5.40	4.61	12.26	7.89	
Temperature Rise	c	28.8	37.5	19.0	27	
Temp Max	c	55.4	64.1	45.6	53.6	
	ço.					

3D Heat Modeling Magnet Design & fabrication Procurement.

Heat absorber Blueprints

16/21

3D Heat Modeling Magnet Design & fabrication Procurement.

CPS platform (Bert)

CPS Platform Design

3D Heat Modeling Magnet Design & fabrication Procurement.

18/21

CPS exp Hall layout (Bert)

Introduction 3D Heat Modeling Design & Optimization Ongoing Efforts Procurement.

Identifying & acquiring CPS materials

Shielding Materials

- $\bullet\,$ material for inner section of the magnet, WCu (80/20) obtained.
- backward shielding, outer skin Pb: SLAC (20 t) and Bates (8 t) obtained. in shipment.
- material for outer (forward) shield W (high density powder) ordered, first two shipments of blocks on-site.

Magnet Design & Procurement. Measure 10x... Procurement. Measure 200% Qty=44 Dimensions 2"x4"x10" W80%Cu20% Qty=44 Dimensions 2"x4"x10" W80%Cu20% Qty=44 Dimensions 2"x4"x10" Measure Blocks Unvertication of the second sec

3D Heat Modeling

• W90%Ni7%Fe3% Qty=40 Dimensions 2.88"x4"x6" 1st shipment

Introduction

(credit: Steve L.)

• W90%Ni7%Fe3% Qty=42 Dimensions 2.88"x4"x6" 2nd shipment

Quo Vadis? (Outlook)

3

イロト イロト イヨト イヨト

I hope I convinced that...

- CPS: novel, efficient tool for (exclusive) photon-nucleon studies.
- Two approved* leading exp., exciting future physics prospects.
- Project at the prototyping, procurement, construction stage.
- I'm likely out of time but if you do have projects/ideas/possible experiments that could use CPS please **JOIN IN!**.

THANK YOU!