

Hall C Futures Overview

Arun Tadepalli – Jefferson Lab (on behalf of the Hall C Future Task Force)

*Borrowed heavily from Tanja Horn's presentation at Hall A/C collaboration meeting June 2021

Hall C Futures Taskforce

- Chairs: Cynthia Keppel, Steve Wood, Mark Jones
- Members
 - Eric Christy (Hampton U.)
 - Dipangkar Dutta (Mississippi State U.)
 - David Hamilton (U.Glasgow)
 - Or Hen (MIT)
 - Tanja Horn (CUA)
 - Garth Huber (U. Regina)
 - Ed Kinney (U. Colorado)
 - Nilanga Liyanage (Uva)
 - Wenliang Li (W&M)
 - Ellie Long (New Hampshire)
 - Dave Mack (JLab)
 - Carlos Munoz-Camacho (IJCLab-Orsay)
 - Brad Sawatzky (JLab)
 - Karl Slifer (New Hampshire)
 - Holly Szumila-Vance (JLab)
 - Arun Tadepalli (JLab)
 - Bogdan Wojtsekhowski (JLab)
 - Your name!

Ask Thia or Mark to become a member https://hallcweb.jlab.org/wiki/index.php/Hall_C_Futures

Hall C: High Precision at the Luminosity Frontier

SHMS, HMS, CPS, NPS, HCAL, ECAL etc. versatility of new equipment

High Precision polarimetry

+ AI/Machine learning

High Precision measurements of small cross sections High power and polarized targets (LH₂, LD₂, NH₃, ND₃, Pol ³He etc) Space for new installations

HMS and SHMS (base spectrometers)

- HMS and SHMS that can reach 6+ and 11+ GeV/c with 10% momentum bites (single and coincidence mode)
- 0.1% reconstruction efficiency easily demonstrated
- Excellent PID
- Cerenkov and lead glass shower counters
- Can go up to 5.5 and 10.5 deg with sub-mrad pointing accuracy

Slide from Tanja

Two pivot configurations

Spectrometers with standard pivot

Spectrometers provide control over systematic uncertainties (important for L/T separations)

> Fixed pivot, precision kinematics, well-shielded detectors

□ NPS adds neutral particle detection

Pivot moved downstream

- LAD or BigBite add large acceptance (backward) detection
- CPS adds high intensity photons

Slide from Tanja

Two pivot configurations

Spectrometers with standard pivot

Pivot moved downstream

- \Box F₂ at x>1
- Pion Form Factor
- Reaction Mechanism validation Kaon FF, GPD and TMD
- Precision EMC

D

 $\hfill\square$ DVCS and p⁰ cross sections

- Polarized WACS
- 2N-SRC
- **Tagging processes**

	12 GeV	24 GeV
New Frontiers	DVCS (with e ⁻ and e ⁺), WACS	DVCS, DDVCS
	Some TCS	TCS with polarized targets
	L/T separations: DVMP factorization tests	L/T separations: DVMP in scaling region?
24 GeV	L/T separations: Pion form factor	L/T separations: Pion and Kaon form factor
12 GeV & 24 GeV	SIDIS basic cross sections (R = σ_L / σ_T , p ^{+/-} ratios)	SIDIS basic cross sections (R, p and K ratios)
Positrons	x > 1 & EMC effect	x > 1 & EMC effect & anti-shadowing?
New Equipment		PV to constrain strange quarks (FF, DIS)
Targets SBS, HCAL, ECAL etc		Tagged Deep Inelastic Scattering
unpolarized, polarized	J/Y threshold production	Threshold charm states production (Y',)?
High Luminosity	LN interactions, hypernuclei	
High X, Q ²	(e,e' backward N) SRC	(e,e' backward particles)
		Table credit: Tanja

See Gabriel Niculescu's talk

- CPS with a small addition could allow us to make a positron beam
- e+/e- physics to pursue 2γ physics
- Search for dark photons

See Vladimir Berdnikov and David Hamilton's talks

NPS (Neutral Particle Spectrometer)

- Precision measurement of cross sections with neutral final states
- 6 fully approved proposals + 1 conditionally approved
- Exclusive DVCS, π^0 cross sections to highest Q², π^0 electroproduction, factorization, WACS, TCS (GPD universality), exclusive production of π^0 (γ p-> π^0 p)

SBS + HCAL for GMn run

HCal Overview

- Design based on COMPASS HCAL1 (Vlasov et al. 2006).
- Segmented calorimeter designed to detect multiple GeV protons and neutrons.
 - 288 PMT modules (24×12).
 - LED fiber optics system.
- SBS dipole magnet separates scattered hadrons by charge.
- High time resolution (0.5 ns).
- High position resolution (3-4 cm at 8 GeV).
- Neutron to proton detection efficiency ratio 0.985 at 8 GeV
- Energy resolution ${\approx}30\%.$

Proton Sweep

- Using a LH₂ target sweep the magnetic field to illuminate all of HCal with elastic protons.
- These elastics are well understood and can be used for calibrations and detector characterization.

Slides taken from Scott Bacrus's talk at Hall A Collaboration meeting (Feb 11th, 2022) 12

BigBite in Hall A

- See Arun Tadepalli's talk
- See Kondo's talk
- See Bogdan Wojtsekhowski's talk
- See Robin Wines's talk

BIGBITE CALORIMETER MOVE TO THE HALL

Cabling up the calorimeter, front end electronics, and DAQ in the hall

GEM trackers in BigBite Spectrometer

Jefferson Lab

BigBite (BB) GEMs

- subset of total SBS GEM layers (5 out of 17)
- BB Front GEM tracker (150cm × 40cm):
 - 2 U-V layers
 - 2 X-Y layers (INFN)
- BB Rear GEM tracker (200cm × 50cm)
 - One X-Y layer (UVa)
- GMn run (Sept 2021 Feb 2022)
- BB GEMs performing very well
- Lost one sector each in 2 U-V layers during the run
- Issues with 2 INFN layers under investigation
- ✤ Efficiency drop with high rates → under investigation

ECAL for GEp

- Full scale calorimeter under construction for the proton GEp experiment
- Radiation damage induced cured by exposing lead glass to UV-light and/or elevated temperature
- 15 cm long light guide, additional copper foil to increase heat conductivity

Recent talk/ideas

- KLL measurement following C-GEn experiment (Oct 14, 2021) Arun Tadepalli [link]
- Final State Interactions in QCD and Other Explorations (Aug 12, 2021) Dipangkar Dutta [link ⊡]
- Overview of a Brooks-style approach to a broadband mixed e+ and e- beam: what measurements it can do, and what it cannot do (Jul 15th, 2021) Dave Mack [link]
- Possibilities for Hypernuclear Physics in Hall C (July 1st, 2021) Toshiyuki Gogami [link G]
- Solid Polarized Targets for the Jlab 12 GeV Era (June 17th, 2021) Karl Slifer, Elena Long [link]
- Proton strangeness from elastic electron scattering (Jun 3rd, 2021) Bogdan Wojtsekhowski [link 4]
- 20 24 GeV FFA CEBAF Energy Upgrade (May 20th, 2021) Alex Bogacz [link 🚱]
- Future Studies of Nuclei in Hall C [focusing on nuclear aspects] (May 6th, 2021) Or Hen [link ⊡]
- A Triple Coincidence Experiment: u-channel DVCS at Hall C (Apr 22nd, 2021) Garth Huber, Bill Li, Justin Stevens [link 🔄]
- Opportunities with High Intensity Photons and Polarized Target (Apr 8th, 2021) Tanja Horn [link 3]
- A high luminosity spectrometer based on a compact, high-field Solenoid for DVCS, DVMP, TDIS and more (Mar 25th, 2021)- Nilanga Liyanage [link]
- Positron Beams at Jefferson Lab Status Report (Mar 11th, 2021) Joe Grames [link]
- Positron Machine, Future Prospects (Mar 11th, 2021) Yves Roblin [link 🚱]
- Electro-weak (e+-, e') Measurements with Unpolarized Target (Feb 25th, 2021) Dave Mack [link 🔄]
- Hall C Future Experiments Cynthia Keppel [link]

One new idea, from N. Liyanage and collaborators

- A high luminosity spectrometer based on a compact 7T Solenoid magnet for DVCS, DVMP, TDIS and more Nilanga Liyanage, Paul Souder, Weizhi Xiong
- A high field compact Solenoid (~7 T field, bore diameter and length ~100 cm) has a $\int b \cdot dl$ similar to a large solenoid like SoLID, but has some important advantages:
 - Costs much less (estimate from manufacturer ~ \$ 3.8 M for the magnet)
 - Much easier to install, instrument and run
 - The area needed to be covered by the detectors is much smaller: this allows for state of the art detectors such as PbWO₄ calorimeters, pixel GEMs etc. with high granularity.
 - The path length from target to detectors is very short: much less multiple scattering better resolution- clean missing mass identification
 - We propose to fill the bore with Helium reduce multiple scattering even further.
- Given the short distance to detectors the background rates will be high: but can handle with pixel GEMs and fast electronics etc: rate estimations already done.
- Early simulations show that this setup can handle luminosities up to 10³⁸
- Will allow comprehensive measurements of DVCS and DVMP covering the entire valance quark region
- Adding several layers of muon GEMs will allow DDVCS.
- The multi-TPC for target tagging fits in nicely within this solenoid measure TDIS, pion and Kaon structure functions, tagged neutron DVCS, DVMP and more
 - mTPC and the GEMs sitting in the He atmosphere with no windows; ideal conditions for detecting very low momentum spectators.

Strangeness Form Factors

SBS & HCAL at 32.5 degrees, 2.5m downstream of polarized target

Standard pivot using HCal: Strangeness form factor via parity polarized proton detection in HCal (may have a peak at high(ish) Q²)

Slide from Dipangkar Dutta

Hall C with SHMS+NMS can provide a new unique window into Λ^{0} polarization. p(\vec{e} , e' K⁺ π^0)n ($\vec{\Lambda}^0$ decay) p(\vec{e} , e' K⁺ γ) Λ^0 ($\vec{\Sigma}^0$ decay)

e' in HMS, K⁺ in SHMS and π^{0}/γ in NMS, invariant mass of (n/ Λ^{0})

n(\vec{e} , e' \vec{p} π⁰)K⁻ ($\vec{\Sigma}$ ⁺ decay) p(\vec{e} , e' \vec{p} π⁰)K⁰ ($\vec{\Sigma}$ ⁺ decay) e' in HMS, \vec{p} in SHMS and π^0 in NMS

Hyper-nuclear

- AN CHARGE SYMMETRY BREAKING
 - A = 3, 4: the aim depends on the results from Hall A (C12-19-002)
 - A = 9: The need of 500 keV resolution to determine the g.s. energy; TG et al, PRC 103, L041301 (2021)

CLUSTER STRUCTURE, DEFORMATION

- ${}^{27}\text{Al}(e, e'K^+){}^{27}_{\Lambda}\text{Mg}$: Identification of the triaxial deformation of ${}^{26}\text{Mg}$ (c.f. M. Isaka, et al., PRC 87, 021304R (2013))
- Ne (A = 20-22) c.f. M. Isaka, PRC 83, 044323 (2011)
- Si (A = 28-30) c.f. M.T. Win and K. Hagino, PRC 78, 054311 (2008)

ΛΝ INTERACTION PROPERTY IN DIFFERENT Δ ENVIRONMENT, MANY-BODY INTERACTION

- Ca (A = 40—48) (40 and 48: E12-15-008)
- Ni (A = 58—64)
- Zr (A = 90—96)
- Mo (A = 92-100)
- Ru (A = 96-104)
- Sn (A = 112-124)
- Sm (A = 144—154)
- Pb (A = 204-208) (208: E12-20-013)

No data with sub-MeV resolution

Slide from Toshiyuki Gogami

- CERN, BNL, KEK, J-PARC: > a few MeV (FWHM)
 - Future plan at HIHR in J-PARC: sub-MeV
 ← In a stage of funding proposal submission (No beam line / apparatus exist yet)
- ➔ JLab is a unique facility to realize it

Novel equipment & configuration ideas

Summary

- Hall C is optimized for precision measurements of small cross sections
- Unique equipment in SHMS, HMS, NPS, CPS, with flexible configurations that include fixed and moved pivots and space for new installations
- New ideas being explored using novel detectors which could be coupled with AI/machine learning
- Positrons, higher energy, high power targets, and more