

The CaFe Experiment:

Isospin Dependence of Short Range Correlations in Nuclei

Hall C Proposal PR12-17-005

Dien Nguyen (On the behalf of the CaFe collaboration) Hall C Collaboration Meeting, 02/18/2022

CaFe: Executive Summary

□ Measure Mean-field and correlation nucleon using the (e,e'p) reaction

□ 4 PAC-day in Hall C using standard HMS and SHMS, ^{40/48}Ca, ⁵⁴Fe, ¹²C, ...

Used to extract:

- □ Absolute and reduce cross section => Distorted Spectral function
- □ SRC/mean-field protons ratios
- Double ratios asym/sym nuclei
- => Proton pairing probabilities
- => Pairing mechanism

What are Short Range Correlations (SRCs) ?

<u>r-space</u>

Nucleon pairs that are close together in the nucleus

high *relative* and lower *c.m.* momentum compared to k_F

Why SRC?

Required for a high-resolution, first principle, description of nuclear systems & processes.

NN interaction from QCD & QCD in nuclei

High-density systems

High-q processes (e.g. $0\nu\beta\beta$ decay)

SRCs study using QE inclusive scattering (e,e')

Kinematical variables:

$$Q^2 = -(p_e - p'_e)^2$$

$$x_B = Q^2/2m(E-E')$$

Resolution scale

Dynamic scale

SRCs study using inclusive QE scattering (e,e')

Schmookler Nature (2019), Fomin PRL (2008), Egiyan PRL (2006), Egiyan PRC (2003)

What we have learned:

- High momentum tail is universal
- \Box a₂ = A/D scaling factor ~ 4-5

Next questions:

- Do all high-momentum nucleon come in pair?
- □ What about *c.m.* momentum?

What type of pairs?

SRCs studies from two-knock out nucleon

SRC study using two-knock out nucleon

SRC study using two-knock out nucleon

Going to Neutron rich nuclei:

What do excess neutrons do?

Proton "speed up" in neutron-rich nuclei

More neutron more correlated proton

M. Duer et al. (CLAS collaboration), Nature 560, 617 (2018)

Absolute (e,e') cross-section measurement

D. Nguyen et al. PRC (2020)

More pairs in ⁴⁸Ca!

D. Nguyen et al., PRC(2020).

CaFe (e,e'p): Understand pairing probability

Kinematic variables:

$$Q^{2} = -(p_{e} - p_{e}')^{2}$$

$$x_{B} = Q^{2}/2m(E - E')$$

$$E_{\text{miss}} = \omega - T_{p} - T_{A-1}$$

$$\stackrel{\rightarrow}{p_{\text{miss}}} = \stackrel{\rightarrow}{q} - \stackrel{\rightarrow}{p}' = -\stackrel{\rightarrow}{p_{\text{init}}}$$

We can answer questions:

Does ⁴⁸Ca has more Proton in SRCs?

□ What is Proton high-momentum fraction?

CaFe (e,e'p): Understand pairing probability

Cross-section:

$$\sigma_{(e,e'p)} = k \sigma_{ep} S_p(E_{miss}, P_{miss})$$

Complications:

- □ Meson Exchange Currents (MEC).
- Delta production (i.e. IC).
- Final state interaction

Solution:

- Choosing the 'right' kinematics,
- Integrate over a wide P_{miss} range,
- Extract cross-section ratios.

Choosing Kinematic: Minimizing non-QE mechanisms

M. M. Sargsian, Int. J. Mod. Phys. E10, 405 (2001) M. M. Sargsian et al., J. Phys. G29, R1 (2003)

Choosing Kinematic: Minimizing non-QE mechanisms

Boeglin et al., PRL 107 (2011) 262501

CaFe Kinematic and Acceptance

Ebeam (GeV)	E' (GeV)	$ heta_e$ Degree	P _p GeV	$ heta_p$ Degree	P _m GeV	Q ² _cen	<q²> GeV²</q²>
10.6	8.85	8.3	1.325	66.4	0.4	2.1	
10.6	8.85	8.3	1.820	48.3	0.15	2.1	

CaFe Kinematic and Acceptance

Q1: Does ⁴⁸Ca has more Proton in SRCs?

□ Cross section ratio ⁴⁸Ca/⁴⁰Ca at high missing momentum

Q2: What is Proton High-momentum fraction?

Double ratio of SRC/Mean-field Proton

Other Potential observables

p_iss [GeV/c]

Summary

- CaFe will do (e,e'p) measurements on different nuclear targets
- □ 4 PAC-day experiments using standard HMS and SHMS
- Data will be used to understand SRC pairing mechanism in asymmetry nuclei
- Observables are absolute cross-section, ratio and double ratio

- 8 Neutrons

Holly Szumila-Vance Florian Hauenstein (Staff) (Staff)

Dien Nguyen (Isgur Fellow)

Carlos Yero (NSF Fellow)

Noah Swan (PhD student)

Plus: Or Hen, Larry Weinstein, Douglas Higinbotham, Eli Piasetzky

Back up slides