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Fundamental questions about microscopic quark-gluon structure 
of nuclei and nuclear forces

• Microscopic origin of intermediate and short-range nuclear forces

• Are nucleons good nuclear quasiparticles?

• Probability and structure of the short-range correlations in nuclei 
How to describe relativistic effects in a many nucleon bound states

• What are most important non-nucleonic degrees of freedom in nuclei?
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Experience of quantum field theory - interactions at different resolutions 
(momentum transfer) resolve different  degrees of freedom - renormalization,.... 
Describe the effects of the Dirac sea…  No simple relation between relevant 
degrees of freedom at different resolution (virtuality)scales. 

➟ Complexity of the problem

① To resolve nucleons with k < kF , one needs Q2≥ 0.8 GeV2.

related effect: Q2  dependence of quenching, Q

Three important scales

related to the rate of eA—> e’p(A-1) process
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L. Lapikas, G. van der Steenhoven,
L. Frankfurt, M.~Strikman, M. Zhalov, 99

Quenching practically disappears 
(≤ 10%) for Q2 ≥1.5 GeV2

More data are highly desirable.
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Eikonal  approximation usually neglects change of the transverse 
nucleon momentum in the final state rescatterings. We checked 
that account of this effect leads to a small correction for k<200 
MeV/c 

FSZ2000; data from D. Dutta et.al.
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Hard nuclear reactions I:  energy transfer > 1 GeV and momentum transfer q > 1 GeV. 

 Sufficient to resolve short-range correlations (SRCs) = direct observation of SRCs but  
not sensitive to quark-gluon structure of the constituents 

Hard nuclear reactions II:  energy transfer ≫ 1 GeV and momentum transfer q ≫ 1 
GeV.  May involve nucleons in special (for example small size  configurations).    
Allow to resolve quark-gluon structure of SRC: difference between bound and free 
nucleon wave function, exotic configurations

③

②
q0 � 1GeV ⇥ |V SR

NN |,  q � 1GeV/c⇥ 2 kF

Principle of resolution scales (FS 76) was ignored in 70’s, leading to believe SRC could 
not  be unambiguously observed.  Hence, very limited data 

Historical remark: in 70’s   it was considered hopeless to look for SRC experimentally, hence Phys.Lett. 
rules (informal)  stated to us by the editor were to reject claims to the opposite without peer review  

Hence one has  to treat the processes in the relativistic domain.  The  price 
is a need to treat the nucleus wave function using light-cone quantization - - 
One cannot use (at least in a simple way) nonrelativistic description of 
nuclei as well as covariant approaches. (More about this in the second part 
of the talk (EMC effect…) 

⇒



⇒ High energy process develops along the light cone. 

Note: in general no benefit for using LC for low energy processes.

↵N = (EN � pN z)/(mA/A)

Relativistic 
projectile

t1, z1 t2, z2

t1 − z1 = t2 − z2

Similar to the perturbative QCD the amplitudes of the processes are expressed through 
the wave functions on the light cone. In the nucleus rest frame

ph

A

In the reference frame of collider (LHC,RHIC) ↵N = AEN/EA
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Kinematics is much simpler in LC variables. Example:  
<latexit sha1_base64="/yZFohp1oOdwMz8Zi27M7/zgSs0=">AAAB+3icdVDLSgMxFM3UV62vsS7dBIsgFIaMdrTdFXXhSirYB7SlZNK0DU1mhiQjlqG/4saFIm79EXf+jZm2gooeuHA4517uvcePOFMaoQ8rs7S8srqWXc9tbG5t79i7+YYKY0lonYQ8lC0fK8pZQOuaaU5bkaRY+Jw2/fFF6jfvqFQsDG71JKJdgYcBGzCCtZF6dr4zxEJgWISXsKNDeF1s9ewCcpBX8VwEkeMht3KSkkqlXPI86DpohgJYoNaz3zv9kMSCBppwrFTbRZHuJlhqRjid5jqxohEmYzykbUMDLKjqJrPbp/DQKH04CKWpQMOZ+n0iwUKpifBNp8B6pH57qfiX1471oNxNWBDFmgZkvmgQc2ieTIOAfSYp0XxiCCaSmVshGWGJiTZx5UwIX5/C/0nj2HFPndJNqVA9X8SRBfvgABwBF5yBKrgCNVAHBNyDB/AEnq2p9Wi9WK/z1oy1mNkDP2C9fQLjupMU</latexit>

� +D ! N +X
<latexit sha1_base64="g2ygNdLpiqsacJ/kpHCBk4qoP0s=">AAACAXicdVDLSgMxFM34rPVVdSO4CRbB1ZCxHW0XQtGNq1LBPqCtQyZN29BkZkgyYhnqxl9x40IRt/6FO//G9CGo6IHA4ZxzubnHjzhTGqEPa25+YXFpObWSXl1b39jMbG3XVBhLQqsk5KFs+FhRzgJa1Uxz2ogkxcLntO4Pzsd+/YZKxcLgSg8j2ha4F7AuI1gbycvsRl75OhH4dnSa5FqhicL8CAqv7GWyyEZu0XUQRLaLnGJuTIrFQt51oWOjCbJghoqXeW91QhILGmjCsVJNB0W6nWCpGeF0lG7FikaYDHCPNg0NsKCqnUwuGMEDo3RgN5TmBRpO1O8TCRZKDYVvkgLrvvrtjcW/vGasu4V2woIo1jQg00XdmEMdwnEdsMMkJZoPDcFEMvNXSPpYYqJNaWlTwtel8H9SO7KdYzt/mc+WzmZ1pMAe2AeHwAEnoAQuQAVUAQF34AE8gWfr3nq0XqzXaXTOms3sgB+w3j4BJ4eWuQ==</latexit>

pmax
N =

3

4
mN
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↵max
N = 2



↵ = (
p

p2 +m2 � p3)/(mD/2) where p is rest frame momentum of nucleon spectator 
in reaction h+ D—> p +X

Highly nonlinear relation between momentum k and momentum p:  backward p=3m/4
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FIG. 3.15: The fast backward proton production in the pD scattering at p� = 0 [27, 39]. The solid curve is the result of
calculation in the relativistic Glauber approximation. Dashed curve is the QCD prediction of section 4 normalized at pN =
0.5 GeV/c. The broken (dashed) curves is the prediction of the Schmidt-Blankenbecler model [71] assuming �(pcm/pcm max)
scaling normalized at pN = 0.3 GeV/c.

FIG. 3.16: Test of the � scaling hypothesis in p+p⇥ ⇥+ +X reaction at pN = 8.9 GeV/c [27] (p� = 0). The solid and dashed
curves are the predictions based on the high energy data [182, 183] assuming � scaling and radial scaling (x = Ecm/Ecm max �
pcm/pcm/pcm max) For authors: is this relation OK? correspondingly.

The same pattern of scaling onset is observed for the process p+p� � +X (fig. 3.16). We want to emphasize that
condition (3.42) is not fulfilled if standard variables such as x = p�L/p�max or E�/E�

max are used (see e.g., [25, 37, 71]) to
compare asymptotic formulae with experiment. In particular these variables vary up to x = 1 at any incident energy.
As a result an artificial violation of the Yang scaling is introduced, see e.g. fig. 3.16 and the dotted curve in fig. 3.15.
This is especially clear for the region of small spectator momenta pN, where the validity of the impulse approximation
can be strictly proved. For example the use of variable x = p�/p�max leads to a change of the cross-section of the
p + D � p + X reaction by a factor of 300 at x = 1

2 , p⇥ = 0 in the range Einc
N = 2-100 GeV (at large energy x = 1

2 ,
p⇥ = 0 corresponds to pN = 0).

In fig. 3.15 a calculation of p + D � p + X [61–63, 106–109] using eq. (3.37) is compared with experimental data
[27, 38, 39]. We use the Hamada-Johnston WF of the deuteron-solution of Weinberg eq. (2.22) and scaling variable
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FIG. 3.17:

�/2 = (
�

m2 + p2�p3)/mD. The result of the calculation overestimates experimental data by (30-50 %26. It is worth

noting that in the studied range of spectator momenta the dominant contribution is given by D-wave. To check this

important feature of the realistic WFs experiments with polarized deuteron beams are necessary (see [7] and section

3 3.3).

3.5.3. Comparison with other approaches

First we compare predictions of eq. (3.37) with the quantum mechanical approach and the Bethe-Salpeter approach

[65], which is similar to approaches [114, 170, 171] for the deuteron structure functions and the deuteron form factor,

which were discussed in the previous subsections. These approaches lead to eqs. (3.44) and (3.45)respectively27

G
D/N
h (p) = ⇤hN

tot⌅
2
D(p)(1 + p3/M)(2� �). (3.44)

G
D/N
h (p) = ⇤hN

tot⌅
2
D(p)(2� �)⇥(2� �). (3.45)

Here p is the spectator momentum in the deuteron rest frame. 1 + p3/M , (2 � �) is the Möller flux factor, which

reflects the Doppler shift for the frequency of the interacting nucleon. � is given by eq. (3.43) and ⌅2(p) = (U2(p) +

W 2(p))/(
�

m2 + p2). ⇥(2� �) accounts for the phase space restrictions due to energy conservation.

Eq. (3.37) and eqs. (3.44), (3.45) correspond to a qualitatively di�erent space-time picture of the strong interaction.

Thus it seems instructive to compare predictions of these models for the nucleon yield. To be definite we use the

deuteron rest frame.

(1) In the Bethe-Peierls approximation when p/m ⇥ 1 (p2 � m⇧D) all formulae coincide. Really this case cor-

responds to the pointlike vertex D ⇤ NN, where expression (3.37) follows from the exact calculation of the

Feynman diagrams [1–3, 61–63].

26 We consider this as one of the evidencies that the absolute normalization of the data [27] should be increased by a factor 1.5-2 (cf.

footnote on p. 84. Note also that it is necessary to check the accuracy of scaling in variable � at � 1.5 at higher energies.

27 To simplify the comparison we consider here the predictions of the models in the impulse approximation.

LC

NR

d�(p+D ! p+X)

d2ktd↵/↵
= �inel

NN 
2
D(↵, kt)

large momentum transfer in NN scattering,  
spectator mechanism -decay function

would be highly desirable to have data from Jlab (real photon, moderate x ~.1- .2)

k ! 1

backward p=0.5 GeV—> k=0.8 GeV
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Realistic NN interactions - NN potential slowly (power law) decreases at large momenta 
-- nuclear wf high momentum  asymptotic determined by singularity of potential:

�2
D(k)|k�⇥ � V 2

NN (k)
k4

D-wave dominates in the Deuteron wf
 for   300 MeV/c < k < 700 MeV/c

D-wave is due to  tensor forces which 
are much more important  for pn than pp

VNN(k)

k

- k

k1~0
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Properties of SRCs
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CD  Bonn

v18 Argonne Large differences between in nD(p)=ψ2D(p) for p>0.4 GeV/c  - 
absolute value and relative importance of S and D waves between 
currently popular models though they fit equally well pn  phase 
shifts.  Traditional nuclear physics probes are not adequate to 
discriminate between these models.
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Tensor forces are pretty singular  ➟ manifestations very similar to 
shorter range correlations - so we refer to both of them as SRC

α~1

α~1

α

2-α



A quick  look at coordinate and momentum deuteron wave functions
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D-wave dominates in momentum space between 300 and 800 MeV/c in spite of 
being much smaller than S wave at all distances. High momentum tail in this region 
is due to Fourier transform of rapidly changing integrand. 
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No simple relation  “high momentum — small distance”

Is w(k) /u(k) universal for k> 300 MeV/c?

No direct calculations so far.



Dynamical quantities (ones which can be directly  observe)

Nonrelativistic Light cone

momentum distribution n(k) LC density matrix ρA(α, kt)
not  observable directly

Spectral function

Decay function

modeled in 2N  moving in mean field model (next slide)

calculated for A=3 and 
nuclear matter

DA(k2, k1, Er) = |⇥⇥A�1(k2, ...) |�(HA�1 � Er)a(k1)| ⇤A⇤|2

FS81 -88
Ab-initio NR calculation  of double  momentum distribution +  

            ansatz 2N  moving in mean field  are used  for modeling spectral and decay functions

11



k=1.5 fm-1

k=2.2 fm-1

k=3.0 fm-1

k=3.5 fm-1

Points  are numerical calculation of the 
spectral functions of 3He and nuclear 
matter - curves two nucleon 
approximation from CSFS 91

Numerical calculations in NR quantum mechanics confirm dominance of two nucleon 
correlations in the spectral functions of nuclei at k> 300 MeV/c - could be fitted by a motion 
of a NN pair in a mean field   (Ciofi, Simula,Frankfurt,  MS - 89-91).  However  numerical 

calculations for nuclear matter ignored three nucleon correlations - 3p3h excitations. 
Relativistic effects maybe important rather early as the recoil modeling does 
involve k2/mN2 effects.
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For power law potentials expect for momentum distribution: nA(k): nA(k)/nD(k) —> const for k—>∞

Agrees with modern calculations. Calculations sum over all partial waves - so 
 no direct confirmation of   D-wave dominance

<latexit sha1_base64="g65lszT0PbyF6XpP7r+9HNGclA0=">AAAB/nicdVDLSsNAFJ3UV62vqrhyM1iEClKS2tpmV3XjSirYB7Q1TKaTZugkGWYmQgkFf8WNC0Xc+h3u/BunD0FFD1w4nHMv997jckalMs0PI7WwuLS8kl7NrK1vbG5lt3eaMooFJg0csUi0XSQJoyFpKKoYaXNBUOAy0nKHFxO/dUeEpFF4o0ac9AI0CKlHMVJacrJ7XeFHztntVb6LGPfRMeSOOnKyObNgV8vlkyo0C6ZpF+2KJrZtWxULWlqZIAfmqDvZ924/wnFAQoUZkrJjmVz1EiQUxYyMM91YEo7wEA1IR9MQBUT2kun5Y3iolT70IqErVHCqfp9IUCDlKHB1Z4CUL397E/EvrxMrr9pLaMhjRUI8W+TFDKoITrKAfSoIVmykCcKC6lsh9pFAWOnEMjqEr0/h/6RZLFinhdJ1KVc7n8eRBvvgAOSBBSqgBi5BHTQABgl4AE/g2bg3Ho0X43XWmjLmM7vgB4y3T1aLlR4=</latexit>

⇢NA (↵, pt)

α ≥ 2 —> 3NSRC.  In LC higher order correlations are explicitly seen already on a single  
particle momentum distribution  level - (not the case for n(k) 

Proportionality  of and for
<latexit sha1_base64="wg424I73PaAcv2ROBpoPV8NrbmY=">AAAB/nicdVDLSsNAFJ3UV62vqrhyM1iEClKS2tpmV9SFK6lgH9DWMJlOmqGTZJiZCCUU/BU3LhRx63e482+cPgQVPXDhcM693HuPyxmVyjQ/jNTC4tLySno1s7a+sbmV3d5pyigWmDRwxCLRdpEkjIakoahipM0FQYHLSMsdnk/81h0RkkbhjRpx0gvQIKQexUhpycnudYUf3V45F/kuYtxHx5A76sjJ5syCXS2XT6rQLJimXbQrmti2bVUsaGllghyYo+5k37v9CMcBCRVmSMqOZXLVS5BQFDMyznRjSTjCQzQgHU1DFBDZS6bnj+GhVvrQi4SuUMGp+n0iQYGUo8DVnQFSvvztTcS/vE6svGovoSGPFQnxbJEXM6giOMkC9qkgWLGRJggLqm+F2EcCYaUTy+gQvj6F/5NmsWCdFkrXpVztbB5HGuyDA5AHFqiAGrgEddAAGCTgATyBZ+PeeDRejNdZa8qYz+yCHzDePgFbVpUh</latexit>

⇢ND(↵, pt)
<latexit sha1_base64="XDzcVTPdZ+TTL4IOi+EFLs0bJDc=">AAACAHicdVDLSgMxFM3UV62vURcu3ASL4GrI9D27ohuXFWwrdIaSSdM2NPMwyQhl6MZfceNCEbd+hjv/xnRaQUUPBA7nnMvNPX7MmVQIfRi5ldW19Y38ZmFre2d3z9w/6MgoEYS2ScQjceNjSTkLaVsxxelNLCgOfE67/uRi7nfvqJAsCq/VNKZegEchGzKClZb65pFtlV1Ob6GLeTzGMOO2VeubRWQ5jWq13IDIQsgpOXVNHMex67YOoAxFsESrb767g4gkAQ0V4VjKno1i5aVYKEY4nRXcRNIYkwke0Z6mIQ6o9NLsgBk81coADiOhX6hgpn6fSHEg5TTwdTLAaix/e3PxL6+XqGHDS1kYJ4qGZLFomHCoIjhvAw6YoETxqSaYCKb/CskYC0yU7qygS/i6FP5POiXLrlmVq0qxeb6sIw+OwQk4Azaogya4BC3QBgTMwAN4As/GvfFovBivi2jOWM4cgh8w3j4BkKeVJA==</latexit>

1.3  ↵  1.6
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Additional  Ansatz - LC implementation of motion of the pair in the mean field 

symmetry in LC NN fraction around αNN=2 

Standard model first developed in the analysis of the BNL pA -> ppn + X experiment and 
perfected by the MIT group: SRC described as universal pn, pp, pairs moving in mean field 

question/concern: removing one nucleon of SRC does not destroy interactions of second nucleon 
of SRC with mean field  - should suppress  emission from pairs with high momenta of the pair.



⇒ Note - local FSI interaction,
up to a factor of 2 for σ(e,e’), 

cancels in the ratio of σ’s

kmin=0.3 GeV
kmin=0.25 GeV

W − MD ≤ 50 MeV

Masses of NN system produced in the 
process are small - strong suppression 

of isobar, 6q degrees of freedom.

=
a2(A1)
a2(A2) |1.6>��1.3

Frankfurt et al, 93

Right momenta for onset of scaling of ratios !!!
14

Superscaling of the ratios  FS88 αtn is α for scattering off pair at rest



A=Cu

From N.Fomin thesis

Universality of 2N SRC is confirmed by Jlab experiments!
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●Frankfurt et al 1993
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)

Probability of the high momentum component in nuclei per nucleon, 
normalized to the deuteron wave function

3

at large x, where scattering from nucleons below the
Fermi momentum is forbidden. If these high-momentum
components are related to two-nucleon correlations (2N-
SRCs), then they should yield the same high-momentum
tail whether in a heavy nucleus or a deuteron.
The first detailed study of SRCs in inclusive scattering

combined data from several measurements at SLAC [12],
so the cross sections had to be interpolated to identical
kinematics to form the ratios. A plateau was seen in the
ratio (σA/A)/(σD/2) that was roughly A-independent for
A ≥ 12, but smaller for 3He and 4He. Ratios from Hall B
at JLab showed similar plateaus [13, 14] and mapped out
the Q2 dependence at lowQ2, seeing a clear breakdown of
the picture for Q2 < 1.4 GeV2. However, these measure-
ments did not include deuterium; only A/3He ratios were
available. Finally, JLab Hall C data at 4 GeV [15, 16]
measured scattering from nuclei and deuterium at larger
Q2 values than the previous measurements, but the deu-
terium cross sections had limited x coverage. Thus, while
there is significant evidence for the presence of SRCs
in inclusive scattering, clean and precise ratio measure-
ments for a range of nuclei are lacking.
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FIG. 2: Per-nucleon cross section ratios vs x at θ=18◦.

Figure 2 shows the A/D cross section ratios for the
E02-019 data at a scattering angle of 18◦. For x > 1.5,
the data show the expected near-constant behavior, al-
though the point at x = 1.95 is always high because the
2H cross section approaches zero as x → MD/Mp ≈ 2.
This was not observed before, as the previous SLAC ra-
tios had much wider x bins and larger statistical uncer-
tainties, while the CLAS took ratios to 3He.
Table I shows the ratio in the plateau region for a range

of nuclei at all Q2 values where there was sufficient large-
x data. We apply a cut in x to isolate the plateau region,
although the onset of scaling in x varies somewhat with
Q2. The start of the plateau corresponds to a fixed value
of the light-cone momentum fraction of the struck nu-
cleon, αi [1, 12]. However, αi requires knowledge of the

initial energy and momentum of the struck nucleon, and
so is not directly measured in inclusive scattering. Thus,
the plateau region is typically examined as a function of
x or α2n, which corresponds to αi under the approxi-
mation that the photon is absorbed by a single nucleon
from a pair of nucleons with zero net momentum [12]. We
take the A/D ratio for xmin < x < 1.9, such that xmin

corresponds to a fixed value of α2n. The upper limit is
included to avoid the deuteron kinematic threshold.

TABLE I: r(A,D) = (2/A)σA/σD in the 2N correlation re-
gion (xmin < x < 1.9). We choose a conservative value of
xmin = 1.5 at 18◦, which corresponds to α2n = 1.275. We use
this value to determine the xmin cuts for the other angles.
The last column is the ratio at 18◦ after the subtraction of
the estimated inelastic contribution (with a systematic uncer-
tainty of 100% of the subtraction).

A θ=18◦ θ=22◦ θ=26◦ Inel.sub
3He 2.14±0.04 2.28±0.06 2.33±0.10 2.13±0.04
4He 3.66±0.07 3.94±0.09 3.89±0.13 3.60±0.10
Be 4.00±0.08 4.21±0.09 4.28±0.14 3.91±0.12
C 4.88±0.10 5.28±0.12 5.14±0.17 4.75±0.16
Cu 5.37±0.11 5.79±0.13 5.71±0.19 5.21±0.20
Au 5.34±0.11 5.70±0.14 5.76±0.20 5.16±0.22
〈Q2〉 2.7 GeV2 3.8 GeV2 4.8 GeV2

xmin 1.5 1.45 1.4

At these high Q2 values, there is some inelastic contri-
bution to the cross section, even at these large x values.
Our cross section models predicts that this is approxi-
mately a 1–3% contribution at 18◦, but can be 5–10% at
the larger angles. This provides a qualitative explanation
for the systematic 5–7% difference between the lowest Q2

data set and the higher Q2 values. Thus, we use only the
18◦ data, corrected for our estimated inelastic contribu-
tion, in extracting the contribution of SRCs.
The typical assumption for this kinematic regime is

that the FSIs in the high-x region come only from rescat-
tering between the nucleons in the initial-state correla-
tion, and so the FSIs cancel out in taking the ratios [1–
3, 12]. However, it has been argued that while the ratios
are a signature of SRCs, they cannot be used to provide
a quantitative measurement since different targets may
have different FSIs [17]. With the higher Q2 reach of
these data, we see little Q2 dependence, which appears
to be consistent with inelastic contributions, supporting
the assumption of cancellation of FSIs in the ratios. Up-
dated calculations for both deuterium and heavier nuclei
are underway to further examine the question of FSI con-
tributions to the ratios [18].
Assuming the high-momentum contribution comes en-

tirely from quasielastic scattering from a nucleon in an
n–p SRC at rest, the cross section ratio σA/σD yields
the number of nucleons in high-relative momentum pairs
relative to the deuteron and r(A,D) represents the rela-
tive probability for a nucleon in nucleus A to be in such

Per nucleon cross section ratio at Q2=2.7 GeV2

E2-019  -2011

Amazingly good agreement between 
the  three (e,e’) analyses for a2 (A) 7

3

at large x, where scattering from nucleons below the
Fermi momentum is forbidden. If these high-momentum
components are related to two-nucleon correlations (2N-
SRCs), then they should yield the same high-momentum
tail whether in a heavy nucleus or a deuteron.
The first detailed study of SRCs in inclusive scattering

combined data from several measurements at SLAC [12],
so the cross sections had to be interpolated to identical
kinematics to form the ratios. A plateau was seen in the
ratio (σA/A)/(σD/2) that was roughly A-independent for
A ≥ 12, but smaller for 3He and 4He. Ratios from Hall B
at JLab showed similar plateaus [13, 14] and mapped out
the Q2 dependence at lowQ2, seeing a clear breakdown of
the picture for Q2 < 1.4 GeV2. However, these measure-
ments did not include deuterium; only A/3He ratios were
available. Finally, JLab Hall C data at 4 GeV [15, 16]
measured scattering from nuclei and deuterium at larger
Q2 values than the previous measurements, but the deu-
terium cross sections had limited x coverage. Thus, while
there is significant evidence for the presence of SRCs
in inclusive scattering, clean and precise ratio measure-
ments for a range of nuclei are lacking.
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FIG. 2: Per-nucleon cross section ratios vs x at θ=18◦.

Figure 2 shows the A/D cross section ratios for the
E02-019 data at a scattering angle of 18◦. For x > 1.5,
the data show the expected near-constant behavior, al-
though the point at x = 1.95 is always high because the
2H cross section approaches zero as x → MD/Mp ≈ 2.
This was not observed before, as the previous SLAC ra-
tios had much wider x bins and larger statistical uncer-
tainties, while the CLAS took ratios to 3He.
Table I shows the ratio in the plateau region for a range

of nuclei at all Q2 values where there was sufficient large-
x data. We apply a cut in x to isolate the plateau region,
although the onset of scaling in x varies somewhat with
Q2. The start of the plateau corresponds to a fixed value
of the light-cone momentum fraction of the struck nu-
cleon, αi [1, 12]. However, αi requires knowledge of the

initial energy and momentum of the struck nucleon, and
so is not directly measured in inclusive scattering. Thus,
the plateau region is typically examined as a function of
x or α2n, which corresponds to αi under the approxi-
mation that the photon is absorbed by a single nucleon
from a pair of nucleons with zero net momentum [12]. We
take the A/D ratio for xmin < x < 1.9, such that xmin

corresponds to a fixed value of α2n. The upper limit is
included to avoid the deuteron kinematic threshold.

TABLE I: r(A,D) = (2/A)σA/σD in the 2N correlation re-
gion (xmin < x < 1.9). We choose a conservative value of
xmin = 1.5 at 18◦, which corresponds to α2n = 1.275. We use
this value to determine the xmin cuts for the other angles.
The last column is the ratio at 18◦ after the subtraction of
the estimated inelastic contribution (with a systematic uncer-
tainty of 100% of the subtraction).

A θ=18◦ θ=22◦ θ=26◦ Inel.sub
3He 2.14±0.04 2.28±0.06 2.33±0.10 2.13±0.04
4He 3.66±0.07 3.94±0.09 3.89±0.13 3.60±0.10
Be 4.00±0.08 4.21±0.09 4.28±0.14 3.91±0.12
C 4.88±0.10 5.28±0.12 5.14±0.17 4.75±0.16
Cu 5.37±0.11 5.79±0.13 5.71±0.19 5.21±0.20
Au 5.34±0.11 5.70±0.14 5.76±0.20 5.16±0.22
〈Q2〉 2.7 GeV2 3.8 GeV2 4.8 GeV2

xmin 1.5 1.45 1.4

At these high Q2 values, there is some inelastic contri-
bution to the cross section, even at these large x values.
Our cross section models predicts that this is approxi-
mately a 1–3% contribution at 18◦, but can be 5–10% at
the larger angles. This provides a qualitative explanation
for the systematic 5–7% difference between the lowest Q2

data set and the higher Q2 values. Thus, we use only the
18◦ data, corrected for our estimated inelastic contribu-
tion, in extracting the contribution of SRCs.
The typical assumption for this kinematic regime is

that the FSIs in the high-x region come only from rescat-
tering between the nucleons in the initial-state correla-
tion, and so the FSIs cancel out in taking the ratios [1–
3, 12]. However, it has been argued that while the ratios
are a signature of SRCs, they cannot be used to provide
a quantitative measurement since different targets may
have different FSIs [17]. With the higher Q2 reach of
these data, we see little Q2 dependence, which appears
to be consistent with inelastic contributions, supporting
the assumption of cancellation of FSIs in the ratios. Up-
dated calculations for both deuterium and heavier nuclei
are underway to further examine the question of FSI con-
tributions to the ratios [18].
Assuming the high-momentum contribution comes en-

tirely from quasielastic scattering from a nucleon in an
n–p SRC at rest, the cross section ratio σA/σD yields
the number of nucleons in high-relative momentum pairs
relative to the deuteron and r(A,D) represents the rela-
tive probability for a nucleon in nucleus A to be in such

Universality of 2N SRC is confirmed by Jlab experiments✺

Probability of the high momentum 
component in nuclei per nucleon, 
normalized to the deuteron wave 
function

Per nucleon cross section ratio 
at Q2=2.7 GeV2 - E2-019-2011

Very good agreement between   three (e,e’) analyses for a2(A) as well as recent CLAS data.

E2-019-2011
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probability 3N SRC =a3 ,  satisfying  <latexit sha1_base64="FCzx59RBR8AD092NOAPS9hBkw+E="></latexit>

a3(A) / [a2(A)]2

So far Jlab experiments  marginally reaching 3N correlation region but they are consistent with our prediction of 
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measured 𝑝𝑚𝑖𝑠𝑠 range. The N2LO (1.0 fm) interaction agrees with the data up to its cutoff and, as expected, 

decreases exponentially above it. Calculations based on a light-cone relativistic version of GCF do not 

produce a large change if phenomenological potential is used but improve significantly the agreement with 

the EFT calculation over the full momentum range (above their cutoff). See Ref. [11] for details.  

 
 

Figure 4: Pmiss dependence of the 12C(e,e′pp) and 12C(e,e′p) event yields (right) and their ratio (left). 
Points show the measured data. Bands with a solid central line show the GCF calculations using the 
N2LO (1.0fm) (blue) and AV18 (black) interactions, including experimental effects. Bands with dashed 
central lines show the same calculations, without accounting for experimental effects (Acceptance, 
efficiency and radiation correction). The width of the bands shows the 68% confidence region of the 
calculation. Figure adapted from ref [11]. 

 

Figure 4 (cont.): Same as above only for the 
Emiss dependence of the 12C(e,e′p) (left) and 
12C(e,e′pp) (right) reactions for different pmiss 
values. The red arrow indicates the expected 
Emiss for a breakup of SRC pair with pCM=0 and 
a missing-momentum that is equal to theto the 
mean value of the data. 

 
Note that we made the assumptions discussed above; however, in the calculations shown in Fig. 4 there 

     Testing spectral function 

    
Nature

 Emiss dependence of the 12C(e,e′p) (left) and 
12C(e,e′pp) (right) reactions for different pmiss 
values. The red arrow indicates the expected Emiss 
for a breakup of SRC pair with pCM=0 and a 
missing-momentum that is equal to the mean 
value of the data. 
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Datamining. Group with participation of a few theorists

question/concern: removing one nucleon of SRC does not destroy interactions of second nucleon of SRC with 
mean field  - should suppress  emission from pairs with high momenta of the pair. Effects of psi?

Example: for 12 C absorption for proton knockout is nearly a factor of 2 different for p and s-shells.  (Zhalov 90).



pn dominance is tested in both kinematics when neutron / proton is spectator  and proton is knocked out, and in when 
proton is spectator and neutron is knocked out + restoration of Wigner symmetry at large momenta

 prediction  (M.Sargsian)  # of high momentum protons = # of high momentum neutronsif all NN pairs are I=0,

Extracted fraction of high-momentum (k>kF) protons and neutrons in neutron 
rich nuclei relative to Carbon. In lead 30% of protons are above Fermi 
surface, and 20% protons. 

 In neutron stars for ρ=2ρ0 most of the protons have momenta > kF(ρ0 ) 
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pairs, neutrons in neutron-rich nuclei should have higher Fermi momentum and thus a higher average 

momentum and kinetic energy as compared to the minority protons. However, as the high-momentum tail 

of the momentum distribution is dominated by np-pairs, there should be equal numbers of protons and 

neutrons above kF. Therefore, the excess neutrons in a neutron-rich nucleus should either increase the 

fraction of correlated protons with high momentum or occupy low-momentum states. In either case, the 

fraction of high-momentum protons should be larger than that of neutrons [16-18]. 

In a recent publication, the JLab data mining collaboration reported on a simultaneous measurement of hard 

QE electron scattering off protons and neutrons (i.e., A(e,e’p) and A(e,e’n) reactions) in A = 12C, 27Al, 56Fe, 

and 208Pb nuclei [18]. The simultaneous measurement of both proton and neutron knockout allowed a direct 

comparison of their properties with only minimal assumptions.  

The measurement was made in two kinematical settings, corresponding to electron scattering primarily off 

nucleons either from an SRC pair (missing momentum >kF) or from the nuclear mean field (missing 

momentum <kF). Using these event samples, the reduced cross-section ratios [A(e,e’n)/σe-n] / [A(e,e’p)/σe-

p] (i.e., measured cross-sections divided by the known elementary electron-proton σe-p and electron-neutron 

σe-n cross-sections) were extracted for each kinematical setting. The results shown in Fig. 2 (left) indicate 

that the n/p mean-field reduced cross-section ratios grow approximately as N/Z for all nuclei, as expected 

from simple nucleon counting. However, the SRC ratios in all nuclei are consistent with unity, as expected 

from SRC np-dominance. 

To quantify the pairing mechanism leading to constant n/p ratios for SRC nucleons, we also extracted the 

relative fraction of high missing-momentum to low missing-momentum events in neutron-rich nuclei 

relative to 12C; see Fig. 2 (right). This extraction was undertaken separately for protons and neutrons, and 

shows that the neutron SRC probabilities are independent of the nuclear neutron excess (i.e., saturate), while 

the corresponding proton fractions grow linearly with N/Z. This observation indicates the outer excess 

neutrons in a neutron-rich nucleus form SRC pairs with protons from the inner ‘core’ of the nucleus.  

  

Figure. 2: Results from recent proton and neutron knockout measurements [18]. Left: extracted ratio of 
proton to neutron knockout from above and below the nuclear Fermi momentum, kF. Right: Extracted 
fraction of high-momentum (k>kF) protons and neutrons in neutron rich nuclei relative to Carbon. 
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Many impressive experimental results in the last few years. Perhaps most impressive 



What is established and what should be further studied (cleaning up and discovery):

Measurement of deuteron wave function ( in a long run S & D-wave separation)

Accuracy of the SRC model  - need comparison with wf  measured in eD—> epn. Experiment

Corrections for fsi & localization of SRC closer to the nucleus center

Tests of  factorization - independence of the 2N wave function on the hard probe.

Gross violation of 2N approximation at    α >1.6

Observing 3N SRC in lepton - nucleus scattering.

Observing nucleons with α >1.6 (backward with moment >> 600 MeV/c

Extending Q2 scale at x<2 - best large Q data are still from 
our analysis of SLAC data; x=1 large Q

(e,e’) at x> 2 and  Q 2>3 GeV2 (current Q2 are too low)

(e,e’) at x~0.2 with production of two backward protons

20% of nucleons belong to SRCs (accuracy ~~20%) 

 SRC when probed via form factors at Q2 >1.5 GeV2 are > 80% nucleonic

☞

☞

☞

☞

☞

☞

☞

☞

☞

Tests of realistic modeling of FSI using nonSRC sample
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RA(x,Q2) =2F2A(x,Q2)/AF2D(x,Q2) from one

Major discovery (by chance) - the European Muon Collaboration effect - 
substantial difference of quark Bjorken x distributions at x > 0.25 in A>2 and 
A=2 nuclei: a large (15%) deviation of the EMC ratio from 1

Let us imagine that one would know all features of SRC  we know  now  and  
would be asked - how large nuclear effects are expected   for DIS  for  deviation of 

Exotics - one when nucleons are close: SRC  P=20%  + (P’> 80%)  SRC in 2N configuration.

P x (1- P’) ~ 4 % effect and Fermi motion effect is < 2% for x <0.6 (discussion below)

EMC effect and related phenomena

19



20

RA(x,Q2) =2F2A(x,Q2)/AF2D(x,Q2) from one

Volume 123B, number  3,4 PHYSICS LETTERS 31 March 1983 

The vahdlty of these calculations can be tested by 
extracting the ratio of the free nucleon structure func- 
tions F~/F~ from the lion and hydrogen data of the 
EMC. Applying, for example, the smearing correction 
factors for the proton and the neutron as given by 
Bodek and Rltchle (table 13 of ref. [8]), one gets a 
ratio whmh is very different from the one obtained 
with the deuterium data [3]. It falls from a value of 
~1 .15  a t x  = 0.05 to a value of ~0.1 a tx  = 0.65 which 
is even below the quark-model lower bound of 0.25. 

A direct way to check the correctmns due to nu- 
clear effects is to compare the deuteron and iron data 
for they should be influenced slmdarly by the neutron 
content of these nuclei. The iron data are the final 
combined data sets for the four muon beam energies 
of 120,200, 250 and 280 GeV; the deuterium data 
have been obtained with a single beam energy of 280 
GeV. The ratio of the measured nucleon structure 
functions for iron F2N(Fe) = 1 wuFe gg* 2 and for deutermm 
FN(D) = {F~ D, ne,ther corrected for Fermi motion, 
has been calculated point by point. For this compari- 
son only data points with a total systematm error less 
than 15% have been used. The iron data have been cor- 
rected for the non-lsoscalarlty of 56Fe assuming that 
the neutron structure function behaves hke F~ = (1 
- 0 .75x)FP .  This gives a correction of ~+2.3% at x 
= 0.65 and of less than 1% forx  < 0.3. The Q2 range, 
which ~s limited by the extent of the deuterium data, 
as different for each x-value, varying from 9 ~< Q2 ~< 27 
GeV 2 for x = 0.05 over 11.5 ~< Q2 < 90 GeV 2 for x 
= 0.25 up to 36 ~ Q 2  ~< 170 GeV 2 forx  = 0.65. 

W~thm the hmlts of statistical and systematm errors 
no slgmficant Q2 dependence of the ratm F ~ ( F e ) /  
FN(D) is observed. The x-dependence of the Q2 aver- 
aged ratio is shown in fig. 2 where the error bars are 
statistical only. For a straight line fit of the form 

FN(Fe)/FN(D) = a + bx , 

one gets for the slope 

b = - 0 . 5 2  + 0.04 (statistical)+ 0.21 (systemattc). 

The systematm error has been calculated by distort- 
mg the measured F N values by the individual system- 
atm errors of the data sets, calculating the correspond- 
mg slope for each error and adding the differences 
quadratically. The possible effect of the systematic 
uncertainties on the slope is lndmated by the shaded 
area m fig. 2. Uncertalntms m the relative normahsa- 

13 

12 

11 

10 

09 

08 

I I [ I I I 1 

02 04 06 X 

2, The ratio of the nucleon structure funct ions F N Fig. mea- 
sured on tron and deuter ium as a function o f x  = O2/2M,-,v. 

- 5 6  The iron data are corrected for the non-lsoscalarlty of 26Fe, 
both  data sets are not  corrected for Fermi motion. The full 

hnear fit F N ( F e ) / F N ( D )  = a + b x  which results c u r v e  i s  a in 
a s l o p e b = - 0 5 2 _ +  0.04 (stat.) -+ 0 . 2 1 ( s y s t )  The shaded 
area indicates the effect of systematm errors on this slope. 

tlon of the two data sets will not change the slope of 
the observed x-dependence of the ratio but can only 
move it up or down by up to seven percent. The dif- 
ference F N ( F e ) - F N ( D )  however ,s very sensitwe to 
the relatwe normahsatlon. 

The result is m complete disagreement with the 
calculations dlustrated an fig. 1. At high x, where an 
enhancement of the quark distributions compared to 
the free nucleon case is predicted, the measured struc- 
ture function per nucleon for ~ron ~s smaller than that 
for the deuteron. The ratio of the two is falhng from 
~1.15  a t x  = 0.05 to a value of ~0 .89  a t x  = 0.65 
while it is expected to rise up to 1.2-1.3 at this x 
value. 

We are not aware of any published detailed predic- 
tion presently available which can explain the behav- 
tour of these data. However there are several effects 
known and discussed which can change the quark dis- 
tributions m a high A nucleus compared to the free 
nucleon case and can contribute to the observed ef- 
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straight line fit  - suggested 
universal mechanism. Fermi 
motion very small effect with 
R(x>0.5) >1

 1987 -  effect is significantly smaller and 
has more complicated x -dependence
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Fig. 3. The structure function ratio F~e(x)lF~2(x) measured in 
this and in a previous [4] experiment. Only statistical errors are 
shown. 

malization. For x <  0.15, the two measurements are 
marginally compatible within the quoted systematic 
errors. Preliminary data from the EM Collaboration 
on a copper target show a less pronounced effect at 
small x in good agreement with our result [ 6 ]. The 
agreement with the SLAC E139 data [2] is excellent 
for x >  0.25 but rather poor at small x ,  In this region, 
we observe, however, a very good agreement with the 
earlier SLAC experiment on a copper target [ 3] at 
small Q2~ 1 GeV 2. 

Table 1 

L~12 

L~ 
1 1 

0.8 

eo 

(a) • BCDMS (combined) 
[ ]  EMC (Ref. 1) 

1 J J J 

1.2 j- (b) • BCDMS (combined) 
O Arnold et al. (Ref. 2) I 

" I i~T~ g } F  ~ l [ ]  S t e i n  e t  ol. (Ref. 5) ] 

0. 0.1 0.2 0.3 0.4 0,5 0.6 0.7 0.8 0.9 
Bjorken x 

Fig. 4. The structure function ratio FVe(x)/F~(x) from this and 
from a previous measurement  [4] combined, compared to other 
muon (a) and electron (b) scattering experiments. The data from 
ref. [ 3 ] were taken with a copper target. Only statistical errors 
are shown. 

In summary, we have complemented our earlier 
measurement of the structure function ratio 
FFet x fl2"~/FD2I ~. 1"32"~ 2 k , ~ 1  2 ~ , ~  J b y  n e w  d a t a  covering t h e  
region of small x (0.06 ~ x ~< 0.20) and improving the 

Results for R(x) =FVe(x)/F~'-(x) from this experiment and ref. [4] combined. The systematic errors do not include the 1.5% uncer- 
tainty on the relative normalization of  Fe and D2 data. 

X Q2 range R(x) Statistical Systematic 
(GeV 2) error error 

0.07 14- 20 1.048 0.016 0.016 
0.10 16- 30 1.057 0.009 0.012 
0.14 18- 35 1.046 0.009 0.011 
0.18 18- 46 1.050 0.009 0.009 
0.225 20-106 1.027 0.009 0.010 
0.275 23-106 1.000 0.011 0.010 
0.35 23-150 0.959 0.009 0.011 
0.45 26-200 0.923 0.013 0.015 
0.55 26-200 0.917 0.019 0.021 
0.65 26-200 0.813 0.023 0.030 

4 8 6  

Bjorken  scaling within 30% 
accuracy - caveat - HT effects are 
large in SLAC kinematics for x≥ 0.5. 
Even more so at Jlab energies

EMC83

q⌫ = (q0, ~q), x = xBj = �q2/2q0mp q⌫ = p�⇤
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the nonrelativistic constituent quark model with parameters fitted to reproduce the nucleon form
factor). An observation of a much larger value of p would signal the presence of large short-range
parton—parton correlations in the nucleon wave function.

At present there exist several pieces of information about (p,~, which are basically consistent with a
naive estimate (for average x):

(i) Production of leading hadrons in the current fragmentation region in the reaction  + N—+ 1’ +
+ h2 + X. The EM Collaboration analysed correlations in the transverse momentum plane between

the leading hadrons using the Lund model. They find that a reasonable description is reached for
(p,) —0.44 GeV/c at x —0.1—0.2 [21].This analysis is likely to overestimate (pj since it does not take
into account the QCD broadening of the p~distribution due to the gluon radiation in the initial state.

(ii) The p-dependence of the leading hadron production in the reaction  + N—~e’ + h + X. The
analyses [22]of this effect lead to (ps) —(0.3—0.4) GeV/c for x—0.1—0.2.

(iii) In Drell—Yan pair production the p~distribution of the  ~ pair is reasonably well described by
the QCD calculations which take into account the gluon radiation (the DDT form factor), see, e.g., ref.
[23].It appears that the agreement would be destroyed if (~~)exceeds 0.5GeV/c. Similarly, the p~
distribution of Xe-meson production is reasonably described by the gluon fusion model with the DDT
form factor [24].This can be considered as an indication that (P5)g also does not exceed 0.5 GeVI c.

3.7. Nuclear effects. Introduction

At the Paris (Rochester) Conference in 1982 the European Muon Collaboration (EMC) first
reported their observation of a difference between the structure functions F2 of heavy (Fe) and light
(D) nuclear targets for 0.05  x  0.65 (fig. 3.11) [25].The difference between the observations and the
expectations of the conventional Fermi motion calculations [26](see discussion in section 5) became
known as the EMC effect.

I I I I I

1.3 -

4+

_ II

::~ ~‘~‘

Fig. 3.11. Ratio ofnucleon structure functionsF~for iron and deuterium as measured by the EM Collaboration in 1983 125]. The solid curve is the
expectation of the Fermi motion models.

Theoretical expectation under 
assumption that nucleus 
consists only of nucleons FS 81



Can account of Fermi motion describe the EMC effect?

YES

If one violates exact QCD sum rules of  baryon charge 
conservation or momentum conservation or both

Many nucleon approximation:

Z
⇥NA (�, pt)

d�

�
d2pt = A baryon charge sum rule

Light cone nuclear nucleon 
density (light cone 
projection of the nuclear 
spectral function

fraction of nucleus momentum 
NOT carried by nucleons

1

A

Z
�⇤NA (�, pt)

d�

�
d2pt = 1� ⇥A

F2A(x,Q
2) =

Z
⇢NA (↵, pt)F2N (x/↵)

d↵

↵
d2pt

In nucleus rest frame x=AQ2/2mAq0

≣probability to find a nucleon 
having momentum αPA
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+
xF 0

2N (x,Q2) + (x2/2)F 00
2N (x,Q2)

F2N (x,Q2)
· 2(TA � T2H)

3mN

Fermi motion

F2N / (1� x)n, n ⇡ 3 +
xn [x(n+ 1)� 2]

(1� x)2
· (TA � T2H)

3mN

small negative  for x <0.5 
> 0  and rapidly growing for x >0.5

RA(x,Q
2) = 1� �AxF 0

N (x,Q2)

FN (x,Q2)

RA(x,Q
2) = 1� �Anx

1� x

Since spread in  α due to Fermi motion is modest ⇒ do Taylor series 

expansion in (1- α):   α= 1+ (α-1)

EMC effect is unambiguous evidence for presence of non nucleonic degrees of 
freedom in nuclei. The question - what are they? 

O.Nash: God in his wisdom made a fly 
         But he forget to tell us why

22

Jlab - due to HT 
effects n~ 2. 
Crossover x=0.66



Why one has to use light-cone densities: DIS develops along the LC sampling the LC 
slice of the wave function  

Weinberg has been first (1966) to elucidate the advantages of the infinite momentum 
frame/ light cone wave functions  for the description of bound states. He writes: “The 
Feynman rules provide a perturbation theory in which the Lorentz invariance of the S 
matrix is kept visible at every step. However this is accomplished only at the cost of 
manifest unitarity, by lumping together intermediate states with different numbers of 
particles and antiparticles. Thus when we try to sum Feynman diagrams to obtain integral 
equations like the Bethe—Salpeter equation it proves very difficult to justify the 
omission of any particular diagrams since there is no one-to-one relation between 
internal lines and intermediate states.”

As a result it is very difficult to implement conservation laws using fixed 
number of degrees of freedom starting from a vertex function, or fixed time 
(nonrelativistic) description  of nuclei
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Drell-Yan experiments:   

Q2 = 15 GeV2

A-dependence of antiquark 
distribution, data are from FNAL 
nuclear Drell-Yan experiment, curves - 
pQCD analysis of Frankfurt, Liuti, MS 
90. Similar conclusions Eskola et al 
93-07 analyses

vs Prediction q̄Ca(x)/q̄N = 1.1÷ 1.2|x=0.05÷0.1

x

VOLUME 65, NUMBER 14 PHYSICAL REVIEW LETTERS 1 OCTOBER 1990

we find that the difference Rs(x, Q ) —I=S~(x,Q )/
AS~(x, Q )—1, evaluated at x =0.05, increases by a
factor of 2 as Q varies between Q =3 and 25 GeV . In
particular, if we use the QCD aligned-jet model
(QAJM) of Refs. 4 and 5 (which is a QCD extension of
the well-known parton logic of Bjorken) to calculate
Rs(x, Q ), we find, in the case of Ca, Rg(x=0.04,
Q =3 GeV ) =0.9 and Rs(x=0.04, Q =25 GeV )
=0.97. The last number is in good agreement with
Drell-Yan data (see Fig. 2). Thus, we conclude that
the small shadowing for S~ observed in Ref. 3 for
x=0.04 and Q & 16 GeV2 corresponds to a much
larger shadowing for Q =Qo.
Shadowing in the sea-quark distribution at x =0.04
[Rs(x=0.04, Q =3 GeV ) =0.9), combined with the
experimental data for F2 (x,Q )/AF2 (x,Q ) at the
same value of x [F2 (x,Q )/AFi (x,Q ) & I], unambi-
guously implies an enhancement of the valence quarks,
i.e., Rv(x, Q ):—V~(x, Q )/AV~(x, Q ) & 1. For Ca,
Rv(x =0.04-0.1, Q 3 GeV ) = 1.1, whereas for
infinite nuclear matter, we find Rv(x =0.04-0.1, Q =3
GeV ) ~ 1.2. By applying the baryon-charge sum rule
[Eq. (2)], we conclude that experimental data require
the presence of shadowing for valence quarks at small
values of x [i.e., Rv(x, Q ) & 1 for x,h &0.01-0.03].
Moreover, the amount of shadowing for Rv(x, Q ) is
about the same (somewhat larger) as the shadowing for
the sea-quark channel (see Fig. 3). The overall change
of the momentum carried by valence and sea quarks at
Q'= I GeV' is

yv(Qo) =1.3%, )s(Qo) =—4.6%.
To summarize, the present data are consistent with the

parton-fusion scenario 6rst suggested in Ref. 7: All par-
ton distributions are shadowed at small x, while at larger
x, only valence-quark and gluon distributions are en-
hanced. At the same time, other scenarios inspired by
the now popular (see, e.g. , Ref. 8) idea of parton fusion,

which assume that the momentum fraction carried by
sea quarks in a nucleus remains the same as in a free nu-
cleon, are hardly consistent with deep-inelastic and
Drell- Yan data.
Let us brieAy consider dynamical ideas that may be

consistent with the emerging picture of the small-x
(x ~ 0.1) parton structure of nuclei. In the nucleus rest
frame the x =0.1 region corresponds to a possibility for
the virtual photon to interact with two nucleons which
are at distances of about I fm [cf. Eq. (I)]. But at these
distances quark and gluon distributions of different nu-
cleons may overlap. So, in analogy with the pion model
of the European Muon Collaboration effect, the natural
interpretation of the observed enhancement of gluon and
valence-quark distributions is that intermediate-range in-
ternucleon forces are a result of interchange of quarks
and gluons. Within such a model, screening of the color
charge of quarks and gluons would prevent any sig-
nificant enhancement of the meson field in nuclei. Such
a picture of internucleon forces does not necessarily con-
tradict the experience of nuclear physics. Really, in the
low-energy processes where quark and gluon degrees of
freedom cannot be excited, the exchange of quarks
(gluons) between nucleons is equivalent, within the
dispersion representation over the momentum transfer,
to the exchange of a group of a few mesons. Another

1. 10I—

. 00
CL

0. 90

0, 80

1.30
1.20 Ca/D

FIG. 2. Ratio R =(2/A)ug(x, g')/uD(x, g') plotted vs x,
for diff'erent values of Q . Notations as in Fig. 1. Experimen-
tal data from Ref. 3.

1 0

FIG. 3. Ratios R(x,gj) (2/3)F" (x,gf)/FP(x, g$)
(dashed line), R=Rv(x, gS) -(2/A) Vq(x, gf)/Vo(x, QS)
(solid line), and R—=Rs(x, g/) =(2/A)S~(x, g/)/SD(x, g/)
(dot-dashed line) in Ca. All curves have been obtained at
Q) =2 GeV . The Iow-x behavior (x ~ x,h) corresponds to the
predictions of the QA3M of Refs. 4 and 5; the antishadowing
pattern (i.e., a 10/o enhancement in the valence channel
whereas no enhancement in the sea, leading to a less than 5%
increase of F~q at x =0.1-0.2) has been evaluated within the
present approach by requiring that sum rules (2) and (3) are
satisfied. Experimental data are from Ref. 1 (diamonds) and
Ref. 3 (squares), the latter representing the sea-quark ratio Rg
(cf. Fig. 2). The theoretical curves are located below the data
at small x, due to the high experimental values of g~: (g )
=14.5 GeV~ in Ref. 1 and (Q ) =16 GeV2 in Ref. 3, respec-
tively.
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meson model expectation

Q2 = 2 GeV2

q̄Ca/q̄N ⇡ 0.97
q̄ C

a
/q̄

N

q̄Ca(x)/q̄N = 1.1÷ 1.2|x=0.05÷0.1

24

1989



52 L. L. Frankfurt, M.I. Strikman / QCD and nuclear phenomena 

~0 

2 
1.6 
1.6 

f.Z 
f 

0.8 

i I 

I 
I 

I 
I 

J 
I 

I 

/ 
I 

! 
/ 

/ / / / /  

._ZJ 
i i t i i i 

0.3 0.5 0.? 

/ 
~X 

Fig. 13. The solid (dashed) curve is the estimate of smearing for the quark (antiquark) distribution in 
nuclei. 

Therefore, smearing leads to small shadowing at x < 2/(n + l) and antishadowing 
at x > 2/(n + 1). Shadowing is maximal at x = 1/n where R --~ 1 -~<k2/m2>n/(n 
- 1). Since for heavy nuclei <k2/m2>,~,O.1 (see sect. 4), maximum shadowing is 
about 2% for n ~ 3. Antishadowing effects are numerically much larger but to 
estimate them reliably it is necessary to use eq. (3.5) since at large x the k2/m 2 
decomposition becomes a very poor approximation. Therefore, we have performed 
the calculation using the realistic W F  introduced in sect. 4. The results of the 
calculation of the ratio F2A(x)/AF2N(X ) are presented in fig. 13 (we use here 

3 F2N(x) = F2p(X)+ F2n(x) and take F2n(x)/F2p(X ) = l - ~ x  and use the scaling fit 
for F2p(x ) [42] and for FEqN(X)~(1 - - x )  7 which really fits antiquark distribution). 
Fig. 13 demonstrates that the effect of the high-momentum component  of the 
nucleus WF is large especially for the antiquark distribution where it considerably 
changes the x dependence at x > 0.5. Therefore, Fermi motion could not be 
neglected in the extraction of ~/(x) as was done in ref. [41]. Similarly for F2A(x ) the 
smearing qualitatively changes the behaviour of the cross section at x > 0.8, which 
will be reached in experiments in the near future. As a result of large smearing, to 
determine F2N(x ) for x • 0.8 it is necessary to measure F2a(x ) in a wider region up 
to x ~ 0.9. 

5.2. MOMENTS OF THE NUCLEUS STRUCTURE FUNCTION 

In this section we calculate the moments  of the nuclear structure function: 

M; = f o dx. 

RA/D(x)

qA(x)/qD(x)

q̄A(x)/q̄D(x)

DY highest x

crossover (R=1) point

Rcr = 2/(n+ 1)

xq̄(x) / (1� x)n, n = 7.

from MS & Leonid Frankfurt, Nucl.Phys. B,1980

Fermi motion expectations  - no nonnucleonic degrees of freedom
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For antiquarks no evidence for enhancement for x> 0.25 expected  due to Fermi motion

Need more  theoretical  studies and  reduced experimental errors to rule out large contribution of the energy losses 

EMC effect like pattern?

Present by Arun Tadepalli
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It appears that essentially one generic scenario survives strong deformation of rare configurations in bound 
nucleons increasing with nucleon momentum  and with most (though not all) of the effect due to the  SRCs .

Models have to address the paradox:  evidence that  EMC effect  is predominantly due 
to SRCs while SRC are at least 90% nucleonic, while the EMC effect for x=0.5 is ≥15%

Natural expectation: non-nucleonic configurations originate  from two nucleons coming close together - the same 
configurations which generate SRCs. Supported by similar A-dependence of pn SRCs and the EMC effect. Extra 
neutrons (N-Z) do not contribute to the EMC effect (Data mining analyses)

(Theoretical expectation FS85 (except pn dominance & apresence of contribution of mean field) , 
observation  O.Hen et al  2014 - 2018) 
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An extreme assumption that EMC effect is present solely for SRC would require huge EMC effect at x=0.5 for EMC (SRC):

 EMC inclusive / Prob. SRC ~ 0.15/0.2 ~ 3/4 for all SRC configurations 



 Don’t introduce a noticeable  number dynamic pions into nuclei

Remember baryon conservation law

Honor momentum  conservation law

Don’t  introduce large deformations of low momentum nucleons

Current Rules of the game  for building models of the EMC effect
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◉

Analysis  of (e,e’) SLAC data at x=1 -- tests Q2 dependence of the nucleon 
form factor  for nucleon momenta kN < 150 MeV/c and Q2 > 1 GeV2 : 

rboundN /rfreeN < 1.036

Analysis of elastic pA scattering

L. Frankfurt and M. Strikman, Hard nuclear processes and microscopic nuclear structure 243

satisfied for the sea at all Q2 (see fig. 3.8). This leads [in the case of a small contribution of the ‘rr~
component to the SU(2) sea] to the restriction AN >3 GeV2 (cf. ref. [7]).

(iii) 1TTNN(t) extracted from the reactions e + p(n)—*e + N(z~)(see ref. [8] and section 8.6) corre-
sponds to

AN=(6±1)GeV2.

(iv) From the reaction p + p-~N + ~ [9]AN 2.5 GeV2.
The derived lower limit on AN  3 GeV2 is much larger than the number used in the OBEP models

(eq. 2.2). Thus the question of the consistency of these models with the restrictions from high-energy
processes requires further investigations. Such an investigation would help to clarify whether short-
range nuclear forces are due to meson exchanges or due to exchanges by constituent quarks and gluons.

2.1.2. Properties of bound nucleons
(a) Nonrelativistic theory reasonably describes the main deuteron characteristics: the magnetic

moment ~d (with 1% accuracy), the electromagnetic form factors up to Q2 1 GeV2 [10], etc. (It is
worth emphasizing that in the momentum space representation realistic deuteron wave functions — Reid
wave function, Paris potential wave function, and Hamada—Johnston wave function — differ consider-
ably for k ~ 0.6—0.8 GeV/c only.) Accounting for the relativistic motion of nucleons in a deuteron, in
terms of light-cone quantum mechanics, improves the description of js~(accuracy 0.5%) [111and
enables us to describe a number of hard nuclear reactions. (For a review see ref. [12]and sections 6—8.)

(b) The data on elastic proton—nucleus scattering at T~ 1 GeV agree with the standard Glauber
model (which uses as input free NN amplitudes) with an accuracy of the order of 2% [13]. Thus the
radii of bound and free nucleons are quite close (cf. the analysis of p4He data [14]):

— 1~~ 0.04. (2.3)

This inequality is relevant for the properties of nucleons at average nuclear densities (not only near the
nuclear surface).

(c) The recent analysis [15] of the SLAC data for the Q2 dependence of the inelastic electron—3He
cross section in the region of the quasinelastic peak indicates that the radius of a nucleon bound in 3He
with momentum ~0.2 GeV/c is close to that of the free nucleon:*)

r~0~!r~~ 1.036. (2.4)

Similar conclusions were reported very recently from the analysis [16] of preliminary SLAC data for
inclusive electron—Al, Fe scattering:

r~°°~/r~~< 1.05. (2.5)

Note that all these data mainly probe the magnetic nucleon form factor of a bound nucleon (see
discussion in section 8.6).

2.1.3. Indications for a signijicant high-momentum component in the wave function of the nucleus
(d) Analysis of high-energy reactions: elastic pD scattering (see, e.g., ref. [17]), kinematically

forbidden proton and pion production, elastic and inelastic electromagnetic form factors of the
*) For k  0.2 the analyses of refs. [15,16] are more uncertain since they neglect the final state interaction effect and the excitation of the

residual system. A more model independent analysis briefly presented in section 8.6 somewhat improves the limit (2.5) for small k.

Similar conclusions from combined analysis of  (e,e’p)  and (e,e’)  JLab data 
☛✺

◉
◉

◉

two extra rules of the game based on SRC studies 

Don’t introduce large exotic component in  nuclei - 20 % 6q, Δ’s

Honor  existence of large predominantly nucleonic short-range correlations

◉
◉

Problem for the nucleon swelling models of the EMC effect with 20% swelling

http://en.wikipedia.org/wiki/You_shall_not_commit_adultery


Very few models of the EMC effect survive  when constraints due to the observations of the 
SRC are included as well as lack of enhancement of antiquarks and Q2 dependence of the 
quasielastic (e,e’) at x=1

 - essentially one generic  scenario (FS85) survives - strong deformation of rare configurations in bound 
nucleons increasing with nucleon momentum  and with dominant contribution due to the  SRCs . 

Example:  in the color screening model presented below 
modification of average properties is < 2- 3 %.
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Dynamical model - color screening model of the EMC effect 

(a) QCD: Quark configurations in a nucleon of a size << average size  should 
interact weaker than in average. Application of the variational principle 
indicates that  probability of such configurations in bound nucleons should be  
suppressed.

Combination of two ideas: 

(b)  Quarks in nucleon with x>0.5 --0.6 belong to small size configurations 
with  strongly suppressed pion field - while pion field is critical for SRC 
especially D-wave.

In  83 we proposed a test of (b)  in hard  pA collisions. Finally became possible 
using data from  pA LHC data then in  2013 on forward jet production confirmed 
our expectations that a nucleon with large x quark has smaller than average size

30

small admixture of nonnucleonic  degrees of freedom  due to small probability of 
configurations with x>0.5 ( ~0.02)  - hence no contradictions with soft physics)

(FS 83-85)



Introducing in the wave function of the nucleus explicit dependence of the 
internal variables we find for   weakly interacting configurations in the first 
order perturbation theory using closer we find 

where
energy in the energy denominator. Using equations of motion for   ψΑ the momentum dependence for 
the probability to  find a bound nucleon, δA(p) with momentum p in a small size configuation  was 
determined for the case of two nucleon correlations and mean field approximation. In the lowest order

�D(p) =

0

@1 +
2 p2

2m + ✏D

�ED

1

A
�2

 ̃A(i) ⇡

0

@1 +
X

j 6=i

Vij

�E

1

A A(i)

�E ⇠ mN⇤ �mN ⇠ 600� 800MeV average excitation 

After including higher order terms we obtained for SRCs and for  deuteron:

�A(p) = 1� 4(p2/2m+ ✏A)/�EA
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Estimating the effect of suppression of small configurations. Introducing in 
the wave function of the nucleus explicit dependence  of the internal 
variables we find that probability of small size configuration is smaller by 
factor 

δ(p,Eexc) =
✓
1� p2int�m2

2ΔE

◆�2

effect ∝ virtuality

32

�E = mN⇤ �mN
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For small virtualities: 1-c(p2int-m2)

 

seems to be very general for the modification of the nucleon properties.  Indeed, 
consider analytic continuation of the scattering amplitude to  p2int-m2=0. In  this 
point modification should vanish. Still modification for S- and D- wave maybe different

33

Our dynamical model for dependence of bound nucleon pdf on virtuality - explains 
why effect is large for large x and practically absent for  x~ 0.2 (average 
configurations V(conf) ~ <V>)
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(b) EMC ratio for 208Pb

FIG. 5: (Color online.) EMC ratios with and without the color screening model of medium
modifications. Q2 = 10 GeV2, and data and nucleonic structure function parametrizations

are as in Fig. 3.

The nucelon, after all, has an overall neutral color charge, so any color interaction between
nucleons owes to higher moments (dipole, quadrupole, etc.), which decrease with distance
between the color-charged constituents. Moreover, it can be shown by the renormalizability
of QCD that meson exchange between nucleons, one of which is in a PLC, is suppressed[49].

Since nucleons in an average-sized configuration (ASC) and a PLC will interact differently,
the probability that the nucleon can be found in either configuration should be modified by
the immresion of a nucleon in the nuclear medium. In particular, PLCs are expected to
be suppressed compared to ASCs since the bound nucleon will assume a configuration that
maximizes the binding energy and brings the nucleus to a lower-energy ground state. The
change in probability can be estimated using non-relativistic perturbation theory, as has
been done in Refs. [1, 49]. What is found is that the light cone density matrix should be
modified by a factor δA(k2), which depends on the nucleon momentum (or virtuality) as

δA(k
2) =

1

(1 + z)2
(34)

z =
k2

mp
+ 2εA

∆EA
. (35)

In analogy with electric charge screening, this is called the color screening model of the
EMC effect. We shall use it as an example of accounting for medium modifications when
calculating dijet cross sections.

Since the suppression factor depends on the total nucleon momentum rather than just
the light cone momentum fraction α, it is necessary to use the three-dimensional light cone
density ρ(α,pT ) when applying the color screening model. Moreover, since the suppression
of PLCs depends on inter-nucleon dynamics, it is expected not just that the parameters of
δA(k2) should vary with the nucleus considered, but with whether the nucleons are moving
in the mean field or are in an SRC. For a nucleon in the mean field of a heavy nucleus,
we expect the excitation energy ∆EA to be in the range 300 − 500 MeV, namely between
the excitation energies of a ∆ and an N∗ resonance. The best bit to data appears to be
with the N∗ excitation energy ∆EA ≈ 500 MeV. However, for the deuteron, as well as for a

16

Simple parametrization of suppression:  no 
suppression x≤ 0.45,  by factor δA(k) for x 
≥0.65,  and linear interpolation in between

Fe , Q2=10 GeV2

Freese, Sargsian, MS 14

In the lowest order of perturbation over fluctuation the EMC effect is proportional to<V>  
in which SRC give dominant contribution but mean field is still significant - 30 -40%,

A-dependence of <V> is similar to that of the EMC effect (I.Sick)



interesting to measure  tagged structure functions where modification is expected to 
increase quadratically with tagged nucleon momentum. It is applicable for searches of 
the form factor modification in (e,e’N).

1� F bound
2N (x/↵, Q2)/F2N (x/↵, Q2) = f(x/↵, Q2)(m2 � p2int)

Here α is the light cone fraction of interacting nucleon

Tagging  of  proton and neutron in  e+D→e+ backward N 
+X as  a probe of the origin of the EMC effect  (FS 85)

↵spect = (2� ↵) = (EN � p3N )/(mD/2)

34

γ

D p
α

2-α

In practice, small background for 2- α >1, and  in this kinematics one expects an EMC like 
effect already for smaller  spectators momenta, since  x/α > x. 

Importance caveat: for large nucleon momenta nucleons closer to each other 
and chances of f.s.i maybe larger. Not the case in semi exclusive case eD—>e +p + “resonance”.
But maybe relevant for larger W. Need dedicate studies of f.s.i. in DIS in the nucleus fragmentation region.



Optimistic possibility - EMC effect maybe missing some significant 
deformations which average out when integrated over the angles 

A priori, deformation of a bound nucleon can also depend on the  angle φ 
between the momentum of the struck nucleon and the reaction axis as 

Here <σ> is cross section averaged over φ and  dΩ is  the phase volume and the 
factor  c characterizes non-spherical deformation. 

d�/d⌦/ < d�/d⌦ >= 1 + c(p, q).

Optimistic possibility - EMC effect maybe missing some significant 
deformations  

A priori the deformation of a bound nucleon can also depend on the  angle φ 
between the momentum of the struck nucleon and the reaction axis as 

Here <σ> is cross section averaged over φ and  dΩ is  the phase volume and the 
factor  c characterizes non-spherical deformation. 

Such non-spherical polarization  is well known in atomic physics (discussion with 
H.Bethe). Contrary to  QED detailed calculations of this effect  are not possible 
in QCD.    However, a qualitatively similar deformation of the bound nucleons 
should arise  in QCD. One may expect that the  deformation of bound nucleon 
should be maximal in the  direction of radius vector between two nucleons of 
SRC.

d�/d⌦/ < d�/d⌦ >= 1 + c(p, q).

Such non-spherical polarization  is well known in atomic 
physics (discussion with H.Bethe). Contrary to  QED 
detailed calculations of this effect  are not possible in 
QCD.    However, a qualitatively similar deformation of 
the bound nucleons should arise  in QCD. One may 
expect that the  deformation of bound nucleon should 
be maximal in the  direction of radius vector between 
two nucleons of SRC.
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Conclusions 

Last decade - impressive progress in understanding SRC in nuclei

Next  few years:   tagged structure functions in eD to test critically the 
origin of the EMC effect , probing  ultra high momenta in nuclei,  three 
nucleon correlations, determining optimal formalism for description of 
relativistic dynamics.

36

To do list for EMC related topics

Leading / HT separation in the EMC effect —- especially at x ~ 0.6  
where Fermi motion effect is very different for LT & HT 

 Tagged structure functions in eD

Direct searches for non-nucleonic degrees of freedom like Δ-isobars

Dedicated studies of f.si. in light nuclei

☞

☞

☞

☞

 Two nucleon SRC - going from discovery to precision measurements 

☞☞

☞
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Supplementary slides
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further open questions: 

with what is accuracy WF  of pn pair  ∝ ψ2D(κ)?; FSIs Boeglin talk✷

✷

✷ off shell eN cross section
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FIG. 7.6: (cont.)

and the corresponding wave functions is rather rigid. However, once this relationship is changed, e.g., by introducing
the transitions of two nucleons into a quark compound bag (QCB), the prediction for R(ps) changes significantly at
ps > 0.3 GeV/c, see, e.g., fig. 7.5b.96

It is worthwhile to emphasize that eqs. (7.3) and (7.4) predict a different momentum dependence at fixed angle
and at fixed nucleon momentum (fig. 7.6), It can be seen from fig. 7.6 that the calculation based on eq. (7.4) leads
to R ∼ ( 1

2 cos2 θ − sin2 θ), although a rather complicated angular dependence follows from eq. (7.3) (θ is the angle
between ps and the 3-axis). To our knowledge the discussed angular dependence of R(ps) is the clearest relativistic
effect suggested so far in the literature. Actually this is the only effect where the relativistic relation between k and
ps becomes important at momenta as low as 0.3 GeV/c.

Equation (7.3) predicts Q2 independence of R(ps). Besides, the same R(ps) is expected for different final states
like Nsp + N, Nsp + ∆, Nsp + N∗, . . .. Such a universality of R(ps) at fixed ps is a general feature of the two-
nucleon approximation (valid in all approaches, nonrelativistic, covariant, and light-cone). Thus, the independence
of w(k)/u(k) extracted from different measurements for the same spectator momentum would provide an important
check of the extraction procedure and of the role of the final state interaction.

At the same time one can expect that at large spectator momenta R(ps) would depend on Q2 in the transitional Q2

range 2− 4 GeV2, where scattering off the compressed nucleon configuration becomes important. This is because the
deformation of the bound nucleon wave function should be somewhat different for S- and D-waves due to the different
relative roles of the one- and two-pion exchange potentials. Indeed, the contribution of the two-pion exchange potential,
which leads to a larger deformation of the bound nucleon wave function (cf. the discussion in section 2 2.5 2.5.2), is
more important for the S-wave.

In the impulse approximation eq. (7.1) is also valid for the deep inelastic reaction e+D → e+p+X. The final state
interaction between the struck nucleon and the spectator is a correction because a large amount of energy (∼ 1 GeV)
is transferred to the interacting nucleon in an average process. Moreover, the contribution to the nucleon yield due to
the production of nucleons in γ∗N interaction (the direct mechanism) constitutes a small correction to the production
of spectator nucleons in a wide kinematical region, α = (

√
m2 + p2

s − ps3)/m > 1 − x. This region includes (for
sufficiently large x) emission of spectators in the forward direction.

Equation (7.1) may be modified due to suppression of the spectator nucleon yield (with α > 1 − x) as a result
of the final state interaction between hadrons produced in $N interaction and would-be spectators. However, the
suppression of the nucleon yield in different spin states should be rather close, at least at small pt, because secondary
hadron rescatterings mostly suppress the contribution of configurations in the deuteron wave function where p, n are

96 We are indebted to I. M. Narodetski for supplying numerical results for the QCB deuteron wave functions [405].

105

FIG. 7.6: Angular dependence of (σ±−σ0)/〈σ〉 for the spectator distribution in the reaction e+ "D → N+X at different nucleon
momenta. Solid and dashed lines are predictions of relativistic theory and nonrelativistic quantum mechanics, respectively.

FIG. 7.6: (cont.)

for nucleon momenta ps ! 0.1 GeV/c (fig. 7.5a),95 although no significant effect is expected for ps ! 0.4 GeV/c in the
6q model (see the above discussion in section 7 7.1). The use of different realistic potentials with nuclear core leads
to quite similar expressions for R(ps), probably because in this framework the relationship between the phase shifts

95 Indeed, the qualitative picture of the ps dependence of R at not too large nucleon momenta within the deuteron (k/m ! 1) is quite
simple. It is well known that in corrdinate space, due to the presence of the D-wave, the charge distribution in the deuteron with spin
pointing in the direction of the 3-axis is “cigar-shaped”. Evidently due to the properties of the Fourier transform in momentum space
the deuteron with helicity ±1 has the form of a ball flattened in the direction of the 3-axis. As a result the yield of the backward
spectators is minimal for deuteron helicity ±1.
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A shtetl dweller asked the rabbi: —What shall I do, my chickens are sick! —Draw a red circle on the wall of the poultry house. Next day: —Rabbi,
my chickens have started dying. —Draw a green triangle around the circle. Next day again: —Rabbi, in the poultry house only corpses are left.
—Pity, I had so many other patterns in reserve.

Anonymous

5. Models of the EMC effect

It is easy to be wise after the event. Though there were no sound theoretical predictions of the EMC
effect*), now more than 100 papers try to explain it in terms of quite different hypotheses.

The EMC effect and related phenomena (sections 6—8) have provided an effective testing ground for
models of nuclei (superdense nuclear matter) and for QCD-inspired ideas on the interaction of nucleons
and the structure of the nucleon itself, which were discussed in section 2. There are several physical
phenomena such as extra pion degrees of freedom in nuclei, change of vacuum condensates in nuclei,
deformation of a bound nucleon wave function, partial delocalization of quarks and gluons in nuclei,
etc., which could contribute significantly to the EMC effect. Thus, our main thrust will be on the
analysis of the relevant physical ideas (naturally their number is much smaller than the number of the
papers on the EMC effect) and the ways of checking these ideas experimentally at present and future
facilities, including possibly HERA.

However, before canonizing the EMC effect one has to answer the question of Advocatus Diaboli:
“Why is all this fuss about the EMC effect? Were there not plenty of effects in nuclei which could not
be explained within the conventional framework?”

Our answer (section 5.1) is that the unique feature of the EMC effect is that it unambiguously proves
the importance of nonnucleon degrees of freedom in nuclei (for a critical discussion of the opposite
claims [2], see Appendix C).

5.1. Why the EMC effect signals the presence of nonnucleon degrees offreedom in nuclei

If the nuclear wave function can be described in terms of the multihadron Fock space wave function

IA)=INNN...)+I~rNNN...)+I~NNN...)+”. (5.1)
in the impulse approximation (which seems reasonable at least forx > 0.2, see the discussion below and
in section 4), the cross section of the  + A —*  + X deep inelastic reaction is described by the sum of
diagrams of fig. 5.1. In the scaling limit x = const., Q2 —* cc the amplitude of the interaction blob
depends on a = A(p~q)i(p~q)— AphJpA (~v_= ~vo ~ q is in the z direction), but not onph+, Pht~
(As usual we neglect here off-pt-shell effects. This approximation is more justified for high-energy
processes than for low-energy ones (see the discussion in ref. [3]). Consequently one can integrate over
the whole phase space volume characteristic for the residual system R (in particular over PR+) at fixed a
and use the closure relation. Therefore, the structure functions are expressed through the single-hadron
light-cone density matrix of the nucleus, p~~1T(a,p~) (for the definition and a discussion of the
properties of p~(a,p

1), see Appendix B). In particular for F2A(x, Q
2) one obtains**)

* IIndeed, the EMC effect at x—0.5 was implicitly present in all papers [1]that introduced the muitiquark states in the deuteron (nucleus) wave
function and used quark counting rules to estimate the quark distribution in these configurations. However, the quark counting rules could only be
justified close to the kinematic boundary and are a priori irrelevant for the range of x one is interested in here. Thus nobody has attributed
importance to this consequence of the quark counting rule motivated parametrizations.

**) Hereafter we define x as x = Q2I2q
0(M~/A)so that 0< x < A. It is slightly different from the choice of many experimental papers:

x = Q
2/2qQm~.

A shtetl dweller asked the rabbi:
—What shall I do, my chickens are sick!
—Draw a red circle on the wall of the poultry house. 
Next day:
—Rabbi, my chickens have started dying.
 —Draw a green triangle around the circle. 
Next day again: 
—Rabbi, in the poultry house only corpses are left. 
—Pity, I had so many other patterns in reserve.
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recent analysis of (e,e’) x> 2 (Day, Sargsian, LF , MS)

Further studies are necessary of  LC scaling of the ratios, etc. Recoil 
structure more complicated than in 2N case 

4

where ↵0

3N
is the threshold value for the ↵3N above which

one expects onset of 3N-SRCs (taken as ⇠ 1.6 as de-
scribed above). To quantify the strength of 3N-SRCs we
introduce a parameter a3(A,Z)[29]:

a3(A,Z) =
3

A

�eA

(�e3He + �e3H)/2
, (5)

representing an intrinsic nuclear property related to the
probability of finding 3N-SRCs in the nuclear ground
state. If a plateau is observed in the 3N-SRC region
of ↵3N then the ratio R3(A,Z) in Eq.(4) can be used to
extract a3(A,Z) as follows[29]:

a3(A,Z) = R3(A,Z)
(2�ep + �en)/3

(�ep + �en)/2
. (6)

The status of the experimental observation of the scal-
ing in the ratio of Eq.(4) is as follows: The E02-109
experiment[38] provided a high accuracy ratios, in the
2N-SRC region, at large momentum transfer for a wide
range of nuclei[9]. This experiment covered some part
of the 3N-SRC kinematic region with lesser quality of
data (see also Refs.[37–40]), providing an indication of
a plateau in the cross section ratios beginning at x > 2
once Q

2 is su�ciently high.
In Ref.[29] it was pointed out that the above-mentioned

data [9, 37, 38] su↵ered from a collapse of the 3
He cross

section between x = 2.68 and x = 2.85 due to di�culties
with the subtraction of the Aluminum target walls. This
issue arose from the relatively small diameter of the tar-
get cell (4 cm) combined with the fact that �Al � �

3
He

at large x as �
3
He must go to 0 at its kinematic limit,

x = 3. The cross section ratio in Ref. [9] was made pos-
sible by the following: First the inverted ratio 3He/4He
was formed and then rebinned - combining three bins
into one for x � 1.15. Subsequently the bins in the in-
verted ratio that had error bars falling below zero were
moved along a truncated gaussian, such that the lower
edge of the error bar was at zero. The ratio was then
inverted to give the ratio for 4He/3He shown in Figure 3
of Ref. [9] and as the triangles in Fig. 3 below. The use
of a truncated gaussian gave rise to the asymmetric error
bars seen in the ratios.

As an alternative to the somewhat unconventional pro-
cedure above, we have used the following approach to
substitute the 3He data of Refs.[9, 37, 38] in 3N-SRC
region: We have replaced the problematic data between
x = 2.68 and x = 2.85 (1.6  ↵3N  1.8), point by point,
by employing a y-scaling function F (y)[41–43] fit to the
SLAC data [35, 36] measured at a comparable Q2. A sim-
ple, two parameter fit F (y) = a exp(�bx), limited to the
range 1.6(y = �0.7)  ↵3N  1.8(y = �1.1) provides a
good description of the the SLAC data[29]. We preserved
the absolute error of the E02019 data set [9, 37, 38] rather
than the smaller errors from the fit. The fit parameters
are a = 0.296 and b = 8.241.

Note that the above approach was first used in Ref. [5],
which provided the first evidence of 2N-SRCs through
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FIG. 3: The ↵3N dependence of the inclusive cross section
ratios for 4He to 3He, triangles - JLAB data [9, 37], circles
- ratios when using a parameterization of SLAC 3He cross
sections [35, 36]. The horizontal line at 1.3  ↵3N < 1.5
identifies the magnitude of the 2N-SRC plateau. The line for
↵3N > 1.6 is Eq.(10) with a 10% error introduced to account
for the systematic uncertainty in a2(A,Z) parameters across
all measurements. The data correspond to Q2 ⇡ 2.5 GeV2 at
x = 1,↵3N = 1.

cross section ratios in inclusive scattering. The 2N-SRC
results obtained have been confirmed by subsequent pre-
cision studies[7–9] in which the ratios were measured in
single experiment.
It is also worth mentioning that in the case of 2N-SRC

the adopted approach was more complicated than the
one we employed in the current work. In Ref. [5] the data
were combined to form the cross section ratios of nuclei
(3He, 4He, C, Al, Fe and Au) to the deuteron, covering
a range in Q2 from 0.9 to 3.2 (GeV/c)2. In the current
analysis of 3N-SRCs, we worked at a single value of Q2 ⇡
2.7 (GeV/c)2 and, incidentally, the 3He data used in 1993
is the same set we employ here. The resulting ratios are
displayed as red circles in Fig. 3.
Fig. 3 presents the results for the cross section ra-

tios obtained within the two above described approaches.
While both give similar results we consider the replace-
ment of the data points between x = 2.68 and x = 2.85
(1.6  ↵3N  1.8) as a best alternative to the procedure
adopted in Ref [9] in part because it allows a consistent
treatment of the ratios for all A.
In Fig. 3 the plateau due to 2N-SRCs is clearly visible

for 1.3  ↵3N  1.5. In this region ↵3N ⇡ ↵2N [29], where
↵2N is the LC momentum fraction of the nucleon in the
2N-SRC. Because of this, we refer to the magnitude of
this plateau as:

R2(A,Z) =
3�A(x,Q2)

A�3He(x,Q2)
|1.3↵3N1.5 =

a2(A)

a2(3He)
. (7)

The horizontal line in the region of 1.3  ↵3N  1.5 is
given by the right hand side of Eq. (7), in which the values
of a2(3He) and a2(A) are taken from the last column of

5

Table II in Ref. [44], an average of the SLAC, JLAB
Hall C and JLAB Hall B results. The magnitude of the
horizontal solid line in the region of 1.6  ↵3N  1.8, is
the prediction of R3N (A,Z) ⇡ R

2

2N
(A,Z) which will be

explained in the next section. We assigned a 10% error to
this prediction (dashed lines) related to the uncertainty
of a2(A,Z) magnitudes across di↵erent measurements.

As Fig.3 shows the data at ↵3N > 1.6 are consistent
with the prediction of the onset of the new plateau in the
3N-SRC region and that its magnitude is proportional to
R

2

2N
.

With a set of 3He data obtained in the above discussed
approach we are able to estimate the ratios for other
nuclei, including, 9Be, 12C, 64Cu, and 197Au, albeit with
larger uncertainties[29].

The large experimental uncertainties in evaluation of
the ratios for 4

He (Fig.3) and for heavier nuclei[29] do not
allow us to claim unambiguously the onset of the plateau
at ↵3N � 1.6. However one can evaluate the validity of
such a plateau by comparing one- and two- parameter
fits to the experimental ratios in the ↵3N � 1.6 region.
The one-parameter fit in the 3N-region gives the values
(Rexp

3
) of the plateaus as seen in Figure 4(a) along with

our prediction of Eq. (10). Rexp

3
is also listed in Table I.

A two-parameter linear fit, returns errors on the param-
eters nearly as large as the parameters themselves and a
correlation matrix indicating that the second parameter
is redundant, providing no additional information.

V. 3N-SRCS AND THE pn DOMINANCE:

In Fig.1(b) the 3N-SRC is produced in the sequence
of two short-range NN interactions in which the nucleon
with the largest momentum interacts with the external
probe[29, 30]. The presence of short-range NN interac-
tions in 3N-SRC configurations tells us that the recently
observed pn-SRC dominance[12–14] is critical to our un-
derstanding of 3N-SRCs.

For 3N-SRCs one expects that only pnp or npn con-
figurations to contribute, with the pn short-range inter-
action playing role of a “catalyst” in forming a fast in-
teracting nucleon with momentum, pi (Fig.1(b) ). For
example, in the case of pnp configuration, the neutron
will play the role of intermediary in furnishing a large
momentum transfer to one of the protons with two suc-
cessive short range pn interactions. Quantitatively such
a scenario is reflected in the nuclear light-front density
matrix in the 3N-SRC domain, ⇢

N

A(3N)
(↵N ), being ex-

pressed through the convolution of two pn-SRC density
matrixes, ⇢N

A(pn)
(↵, p?) as follows:

⇢
N

A(3N)
(↵N , p?) ⇡

X

i,j

Z
F (↵0
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0
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A(pn)
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↵
0
j
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0
j?

�
d↵id
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2
pj?,(8)

where (↵0
i/j

, p
0
i/j?), are the LC momentum fractions and

transverse momenta of spectator nucleons in the center of

mass of the pn SRCs. According to the pn dominance[17]:

⇢
N

A(pn)
(↵, p?) ⇡

a2(A,Z)

2XN

⇢d(↵, p?), (9)

where XN = Z/A or (A � Z)/A is the relative fraction
of the proton or neutron in the nucleus and ⇢d(↵, p?) is
the light-front density function of the deuteron at ↵ �
1.3. The factor F (↵0

i
, pi?,↵

0
j
, pj?) is a smooth function

of LC momenta and accounts for the phase factors of
nucleons in the intermediate state between the sequential
pn interactions with 0 < ↵

0
i/j

< 2.

0
1
2
3
4
5
6
7
8
9

10 100

(a)

(a
2(
A)
/a
2(
3 H
e)
)2
,R

3e
xp

A

(a2(A)/a2(3He))2

R3exp

0
1
2
3
4
5
6
7
8
9

10 100

(b)
a 2

an
d
a 3

A

a2(A)
a3(A)

FIG. 4: (a) The A dependence of the experimental evaluation
of R3 compared with the prediction of Eq.10. (b) The A
dependence of a3(A,Z) parameter compared to a2(A,Z) of
Ref.[9].
It follows, from Eq.(8) and the expression of

⇢
N

A(pn)
(↵, p?) in Eq.(9), that the strength of 3N-SRCs is

/ a
2

2
(A,Z). This is evident by calculating R3 in Eq.(4)

using the relation (3) and the conjecture of Eq.(8), which
leads to[29]:

R3(A,Z) =
9

8

(�ep + �en)/2

(2�ep + �en)/3
R

2

2
(A,Z) ⇡

✓
a2(A,Z)

a2(3He)

◆2

,

(10)
where �ep ⇡ 3�en in the considered Q

2 ⇠ 3 GeV2 range.
As Fig.3 shows the prediction of R3 ⇡ R

2

2
is in agreement

with the experimental per nucleon cross section ratios of
4He to 3He targets. There is a similar agreement for other
nuclei including 9Be, 12C, 64Cu and 197Au[29].
To test the prediction of Eq.(10) quantitatively we

evaluated the weighted average of Rexp

3
(A,Z) for ↵3N >
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Table II in Ref. [44], an average of the SLAC, JLAB
Hall C and JLAB Hall B results. The magnitude of the
horizontal solid line in the region of 1.6  ↵3N  1.8, is
the prediction of R3N (A,Z) ⇡ R

2

2N
(A,Z) which will be

explained in the next section. We assigned a 10% error to
this prediction (dashed lines) related to the uncertainty
of a2(A,Z) magnitudes across di↵erent measurements.

As Fig.3 shows the data at ↵3N > 1.6 are consistent
with the prediction of the onset of the new plateau in the
3N-SRC region and that its magnitude is proportional to
R

2

2N
.

With a set of 3He data obtained in the above discussed
approach we are able to estimate the ratios for other
nuclei, including, 9Be, 12C, 64Cu, and 197Au, albeit with
larger uncertainties[29].

The large experimental uncertainties in evaluation of
the ratios for 4

He (Fig.3) and for heavier nuclei[29] do not
allow us to claim unambiguously the onset of the plateau
at ↵3N � 1.6. However one can evaluate the validity of
such a plateau by comparing one- and two- parameter
fits to the experimental ratios in the ↵3N � 1.6 region.
The one-parameter fit in the 3N-region gives the values
(Rexp
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) of the plateaus as seen in Figure 4(a) along with

our prediction of Eq. (10). Rexp

3
is also listed in Table I.

A two-parameter linear fit, returns errors on the param-
eters nearly as large as the parameters themselves and a
correlation matrix indicating that the second parameter
is redundant, providing no additional information.

V. 3N-SRCS AND THE pn DOMINANCE:

In Fig.1(b) the 3N-SRC is produced in the sequence
of two short-range NN interactions in which the nucleon
with the largest momentum interacts with the external
probe[29, 30]. The presence of short-range NN interac-
tions in 3N-SRC configurations tells us that the recently
observed pn-SRC dominance[12–14] is critical to our un-
derstanding of 3N-SRCs.

For 3N-SRCs one expects that only pnp or npn con-
figurations to contribute, with the pn short-range inter-
action playing role of a “catalyst” in forming a fast in-
teracting nucleon with momentum, pi (Fig.1(b) ). For
example, in the case of pnp configuration, the neutron
will play the role of intermediary in furnishing a large
momentum transfer to one of the protons with two suc-
cessive short range pn interactions. Quantitatively such
a scenario is reflected in the nuclear light-front density
matrix in the 3N-SRC domain, ⇢
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(↵N ), being ex-
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It follows, from Eq.(8) and the expression of
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(↵, p?) in Eq.(9), that the strength of 3N-SRCs is
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(A,Z). This is evident by calculating R3 in Eq.(4)

using the relation (3) and the conjecture of Eq.(8), which
leads to[29]:
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where �ep ⇡ 3�en in the considered Q

2 ⇠ 3 GeV2 range.
As Fig.3 shows the prediction of R3 ⇡ R
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is in agreement

with the experimental per nucleon cross section ratios of
4He to 3He targets. There is a similar agreement for other
nuclei including 9Be, 12C, 64Cu and 197Au[29].
To test the prediction of Eq.(10) quantitatively we

evaluated the weighted average of Rexp

3
(A,Z) for ↵3N >

Onset of 3N dominance at α~ 1.6
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Since NN interaction is sufficiently singular for large momenta

⇥N
A (�, pt) can  be expanded over contributions of j-nucleon correlations ⇥j(�, pt)

Three nucleon SRCs = three nearby nucleons with large relative momenta

238 L.L. Frankfurt and MI. Strikman, High -energy phenomena, short-range nuclear structure and (lCD

dominated by the configurations, where the momentum of a fast nucleon-k is balanced by the rest of

the nucleus (i.e. the nucleon configuration p’ = k; P2 p
3~ PA — —k/A — 1). This hypothesis has

recently been revived by Amado and Woloshyn [44] in their analysis of the backward nucleon
production at initial energies T~= 600—800 MeV. Practically the same hypothesis was discussed by

Blankenbecler and Schmidt in connection to the backward p, IT production at large energies in the
framework of the Bethe—Salpeter light cone formalism [46—48].

At the same time for a realistic NN potential with a core, the contribution of two-nucleon

correlations dominates at k —* ~. This follows from the large difference between the scales of the
long-range potential characterizing the depth of the potential well (—40MeV), and of the short-range

repulsive potential (the value of the barrier is ~0.6 GeV for the realistic NN potentials). Numerical

calculations with realistic potentials [82] indicate that two-nucleon correlations dominate in n(k) at
k  0.4—0.5 GeV/c.

In relativistic theory the answer is more complicated. It seems fruitful for the theoretical analysis of

hard phenomena to define formally the notion of f-nucleon correlation. Look at a subsystem of j
nucleons in the ground state having invariant mass —~jmN,where nucleons obtain large relative

momenta due to hard short-range interactions between all j nucleons. Typical example of the

three-nucleon correlation is shown in fig. 2.11. Before a hard interaction the j nucleons are in the
average configuration (a, —— a~‘— 1), f-nucleon correlation contribute to p~(a,k± )in the region a <I only

due to momentum conservation. In the non-relativistic Schrödinger equation this kinematic decom-

position of f-nucleon correlations is not evident. Therefore onecannot relate simply n(k) to p~(a,k1) for

a~2.

Though at a —~A A-nucleon correlation should dominatep~(a,k± ),in the region 1 <a -~A relative
contributions of different configurations are determined by the competition of two factors: the small

probability a3 to find a correlation with large / and the enhancement of higher correlations due to a
slower decrease of their contribution to p~(a,k1) at large a (see eq. (2.43)). Therefore it seems natural

to expect that at least in the region of not too large a S 3 (which is probed until now) few-nucleon

correlations (FNC) dominate. Thus, the nucleon density matrix p~(a,k± )can be effectively expanded

over the contribution of j-nucleon correlations p1(a, k1):

k.1) = ~ a1p,(a, k1). (2.38)

More accurate treatment is required to account for the c.m. motion of the j-nucleon configuration in the

mean field of the nucleus. It is expected that this effect should lead to small corrections except near the

edge of the f-nucleon correlation. This is because the scale of the repulsive potential is considerably
larger than that for the long-range potential.

The a1’s in eq. (2.38) can be estimated on the basis of the non-relativistic Schrödinger equation for

nuclear WF since they are determined by the mean internucleon distances. The well known fact that the

/34 ,

Fig. 2.11. A typical diagram for the three-nucleon correlation.⇥j(�, pt)(j � �)n(j�1)+j�2, where ⇥j(�, 0) ⇥ (2� �)n
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iterations of NN interactions (Plus 3N from 3N forces possible)

α  up to 2  (3) are allowed for 2N (3N) SRC ( plus small mean field corrections) 

NR case large k = 2N SRC, qualitative difference relativistic and 
nonrelativistic dynamics
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of the correlated nucleons by energetic projectile was suggested in [5] as a spectator
mechanism for production of nucleons in the reaction of Eq.(4). It was experimentally
confirmed in high momentum transfer triple coincidence A(p, 2p, N)X experiment[15,
16] in which clear correlation between pin and pr was observed.

Therefore already this example demonstrates that moving from spectral to decay
function we obtain an additional tool for probing SRCs, such as correlation between
initial and recoil nucleon momenta.

Another advantage of decay function is the possibility to isolate three-nucleon
correlations and probe their different dynamical aspects. Fig8 shows the dependence
of decay function on the relative angle of recoil nucleon momentum with respect to
pin and recoil nuclear energy for pin, pr ≥ 400 MeV/c.
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Figure 8: Dependence of the decay function on the residual nuclei energy and relative
angle of struck proton and recoil nucleon. Figure (a) neutron is recoiling against
proton, (b) proton is recoiling against proton. Inital momentum of the struck nucleon
as well as recoil nucleom momenta is restricted to pin, pr ≥ 400 MeV/c.

Fig.8 shows a rather extensive possibiliteis to isolate 2N and 3N correlations vary-
ing recoil energy of the reaction. In the calculation presented above the threshould

for type 2N-I SRCs (Fig.4(a)) will be ∼ p2
in,min

2mN
≈ 80 MeV, while for type 3N-I SRCs

(Fig.6) the threshold for recoil energies is twice as large. Upper left side of the figure
demonstrates how type 2N-I SRC evoles to type 3N-I SRC with recoil nucleon being
spectator in correlations. The figure also shows who with an increase or recoil energy
type 3N-II correlations start to dominate. The important signature in this case is the
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Evidence from NR calculations?  3N SRC can be seen in the 
structure of decay of 3He (Sarsgian et al).

Searching for three-nucleon short-range correlations

Misak M. Sargsian1, Donal B. Day2, Leonid L. Frankfurt3, and Mark I. Strikman4
1 Department of Physics, Florida International University, Miami, FL 33199, USA
2 Department of Physics, University of Virginia, Charlottesville, VA 22904, USA
3Sackler School of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel

4 Department of Physics, Pennsylvania State University, University Park, PA 16802
(Dated: November 1, 2019)

Three nucleon short range correlations (SRCs) are one of the most elusive structures in nuclei.
Their observation and the subsequent study of their internal makeup will have a significant impact
on our understanding of the dynamics of super-dense nuclear matter which exists at the cores
of neutron stars. We discuss the kinematic conditions and observables that are most favorable
for probing 3N-SRCs in inclusive electro-nuclear processes and make a prediction for a quadratic
dependence of the probabilities of finding a nucleon in 2N- and 3N- SRCs. We demonstrate that
this prediction is consistent with the limited high energy experimental data available, suggesting
that we have observed, for the first time, 3N-SRCs in electro-nuclear processes. Our analysis en-
ables us to extract a3(A,Z), the probability of finding 3N-SRCs in nuclei relative to the A=3 system.

I. INTRODUCTION:

Three nucleon short-range correlations (3N-SRCs), in
which three nucleons come close together, are unique
arrangements in strong interaction physics. 3N SRC’s
have a single nucleon with very large momentum (>⇠
700 MeV/c) balanced by two nucleons of compara-
ble momenta. Unlike two-nucleon short-range correla-
tions (2N-SRCs), 3N-SRCs have never been probed di-
rectly through experiment. As the consequence of the
factorization of short-distance e↵ects from low momen-
tum collective phenomena [1, 2], 2N- and 3N- SRCs dom-
inate the high momentum component of nuclear wave
function which is almost universal up to a scale factor (see
e.g.[1, 3]).

The dynamics of three-nucleon short-range configura-
tions reside at the borderline of our knowledge of nuclear
forces making their exploration a testing ground for “be-
yond the standard nuclear physics” phenomena such as
irreducible three-nucleon forces, inelastic transitions in
3N systems as well as the transition from hadronic to
quark degrees of freedom. Their strength is expected
to grow faster with the local nuclear density than the
strength of 2N-SRCs [1, 2]. As a result, their contribution
will be essential for an understanding of the dynamics of
super-dense nuclear matter (see e.g. Ref. [4]).

Until recently a straightforward experimental probe of
2N- and 3N-SRCs was impossible due to the requirements
of high-momentum transfer nuclear reactions being mea-
sured in very specific kinematics in which the expected
cross sections are very small (see Ref.[1] and references
therein). With the advent of the high energy (6 GeV)
and high intensity continuous electron accelerator at Jef-
ferson Lab (JLab) in the late 1990’s, an unprecedented
exploration of nuclear structure became possible, opening
a new window to multi-nucleon SRCs.

FIG. 1: (a) Geometry of 2N-SRCs, pr ⇡ �pi. Two config-
urations of 3N-SRCs: (b) Configuration in which recoil nu-
cleon momenta pr2,pr3 ⇠ �pi/2, (c) configuration in which
pr2 ⇠ pr3 ⇠ pi. Here ms is the invariant mass of the recoiling
2N system.

II. TWO NUCLEON SHORT RANGE
CORRELATIONS (2N-SRCS)

The first dedicated study of 2N-SRCs in inclusive,
A(e, e0)X, high momentum transfer reactions revealed
a plateau in the ratios of per nucleon cross sections
of heavy nuclei to the deuteron [5] measured at Stan-
ford Linear Accelerator Center (SLAC) with momentum
transfer, Q

2 >⇠ 2 GeV2 and Bjorken variable x > 1.5.

Here x = Q
2

2mNq0
with mN the nucleon mass and q0 the

transferred energy to the nucleus, and for a nucleus A,
0 < x < A. The observed plateau, largely insensitive
to Q

2 and x, sets the parameter a2(A,Z)[6] which is the
probability of finding 2N-SRCs in the ground state of
the nucleus A relative to the deuteron. These plateaus
were confirmed in inclusive cross section ratios of nuclei
A to 3He[7, 8], at similar kinematics with the magnitude
of plateaus taken to be related to the relative probabil-
ity, a2(A,Z)

a2(
3He)

. Qualitatively and quantitatively the latter

results were in agreement with Ref.[5]. These, together
with more recent and dedicated measurements of the nu-
clear to the deuteron inclusive cross section ratios[9], pro-
vided compelling evidence for the sizable (⇠ 20%) high
momentum component of the ground state nuclear wave
function for medium to heavy nuclei originating from 2N-
SRCs.
While inclusive processes provided the first evidence
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relative angle of the recoil nucleon emission being close to 1200 that characterized
type 3N-II SRCs. The lower right part of the figure shows also different realization
of 3N-I SRCs in which both struck and recoiled nucleons are spectator with the third
nucleon which has roughly twice the momentum of pin or pr.
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Figure 9: Recoil energy dependence of the ratio of decay function calculated for the
case of struck and recoil nucleons being both protons to the decay function for the
case of struck proton and recoil neutron. Both initial momentum of struck and recoil
nucleons is set to be larger than 400 MeV/c. Also the relative angle between inital
and recoil nucleons is restricter to 180 ≤ θr ≥ 1700

Fig.8(a) and (b) corresponds to situation in which struck-proton is detected with
recoil neutron or proton respectively. Comparison of these two cases shows (see
upper left part of the graph) that in type 2N-I SRCs pn correlation dominates the pp
by factor of ten. This feature reflects the dominance of tensor interaction in S = 1,
T = 0 channel of NN interaction at short distances and was confirmed experimentaly,
both for hadron- and electon- induced triple coincidence reactions on carbon[17, 18].
Interesting consequence of the onset of 3N SRCs is that these two rates become
practically equal once recoil energy increases. More detailed view of relative strenght
of pp and pn decay function is given in Fig.9 which demonstrates this trend clearly
which can be considered as an unambigeous indication of the dominance of type 3N-I
SRC effects.

As it was mentioned before formulation of the decay function can be extended to
the situations in which more than two nucleons are detected in the products of the
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Recoil energy dependence of the ratio of decay function calculated 
for the case of struck and recoil nucleons - ps & pr for struck 
proton and recoil proton and neutron for ps & pr > 400MeV/c &   
180o > θ(ps  pr) > 170o

Jlab e,epN
experiment

3N SRC
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Some of experimental evidence in historic order

Plenty of data were described using few nucleon SRC approximation with 3N, 4N correlations 
dominating in certain kinematic ranges. Strength of 2N correlations is similar to the one found in (e,e’),
(p,2p)

Observations of (p,2pn) &(e,e’) at x>1 confirm the origin of SRC as 
the dominant source of the fast backward nucleons

Comparison of few nucleon SRC approximation 
with pA data at Epinc=400 GeV

α= 3.0

pTa→backward p+Xp6Li→backward p+X

Test of universality for pA→p+X  spectra 
for backward emission at   Ep= 9 GeV
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recent analysis of (e,e’) x> 2 (Day, Sargsian, LF , MS)

Further studies are necessary of  LC scaling of the ratios, etc. Recoil 
structure more complicated than in 2N case 

4

where ↵0

3N
is the threshold value for the ↵3N above which

one expects onset of 3N-SRCs (taken as ⇠ 1.6 as de-
scribed above). To quantify the strength of 3N-SRCs we
introduce a parameter a3(A,Z)[29]:

a3(A,Z) =
3

A

�eA

(�e3He + �e3H)/2
, (5)

representing an intrinsic nuclear property related to the
probability of finding 3N-SRCs in the nuclear ground
state. If a plateau is observed in the 3N-SRC region
of ↵3N then the ratio R3(A,Z) in Eq.(4) can be used to
extract a3(A,Z) as follows[29]:

a3(A,Z) = R3(A,Z)
(2�ep + �en)/3

(�ep + �en)/2
. (6)

The status of the experimental observation of the scal-
ing in the ratio of Eq.(4) is as follows: The E02-109
experiment[38] provided a high accuracy ratios, in the
2N-SRC region, at large momentum transfer for a wide
range of nuclei[9]. This experiment covered some part
of the 3N-SRC kinematic region with lesser quality of
data (see also Refs.[37–40]), providing an indication of
a plateau in the cross section ratios beginning at x > 2
once Q

2 is su�ciently high.
In Ref.[29] it was pointed out that the above-mentioned

data [9, 37, 38] su↵ered from a collapse of the 3
He cross

section between x = 2.68 and x = 2.85 due to di�culties
with the subtraction of the Aluminum target walls. This
issue arose from the relatively small diameter of the tar-
get cell (4 cm) combined with the fact that �Al � �

3
He

at large x as �
3
He must go to 0 at its kinematic limit,

x = 3. The cross section ratio in Ref. [9] was made pos-
sible by the following: First the inverted ratio 3He/4He
was formed and then rebinned - combining three bins
into one for x � 1.15. Subsequently the bins in the in-
verted ratio that had error bars falling below zero were
moved along a truncated gaussian, such that the lower
edge of the error bar was at zero. The ratio was then
inverted to give the ratio for 4He/3He shown in Figure 3
of Ref. [9] and as the triangles in Fig. 3 below. The use
of a truncated gaussian gave rise to the asymmetric error
bars seen in the ratios.

As an alternative to the somewhat unconventional pro-
cedure above, we have used the following approach to
substitute the 3He data of Refs.[9, 37, 38] in 3N-SRC
region: We have replaced the problematic data between
x = 2.68 and x = 2.85 (1.6  ↵3N  1.8), point by point,
by employing a y-scaling function F (y)[41–43] fit to the
SLAC data [35, 36] measured at a comparable Q2. A sim-
ple, two parameter fit F (y) = a exp(�bx), limited to the
range 1.6(y = �0.7)  ↵3N  1.8(y = �1.1) provides a
good description of the the SLAC data[29]. We preserved
the absolute error of the E02019 data set [9, 37, 38] rather
than the smaller errors from the fit. The fit parameters
are a = 0.296 and b = 8.241.

Note that the above approach was first used in Ref. [5],
which provided the first evidence of 2N-SRCs through
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FIG. 3: The ↵3N dependence of the inclusive cross section
ratios for 4He to 3He, triangles - JLAB data [9, 37], circles
- ratios when using a parameterization of SLAC 3He cross
sections [35, 36]. The horizontal line at 1.3  ↵3N < 1.5
identifies the magnitude of the 2N-SRC plateau. The line for
↵3N > 1.6 is Eq.(10) with a 10% error introduced to account
for the systematic uncertainty in a2(A,Z) parameters across
all measurements. The data correspond to Q2 ⇡ 2.5 GeV2 at
x = 1,↵3N = 1.

cross section ratios in inclusive scattering. The 2N-SRC
results obtained have been confirmed by subsequent pre-
cision studies[7–9] in which the ratios were measured in
single experiment.
It is also worth mentioning that in the case of 2N-SRC

the adopted approach was more complicated than the
one we employed in the current work. In Ref. [5] the data
were combined to form the cross section ratios of nuclei
(3He, 4He, C, Al, Fe and Au) to the deuteron, covering
a range in Q2 from 0.9 to 3.2 (GeV/c)2. In the current
analysis of 3N-SRCs, we worked at a single value of Q2 ⇡
2.7 (GeV/c)2 and, incidentally, the 3He data used in 1993
is the same set we employ here. The resulting ratios are
displayed as red circles in Fig. 3.
Fig. 3 presents the results for the cross section ra-

tios obtained within the two above described approaches.
While both give similar results we consider the replace-
ment of the data points between x = 2.68 and x = 2.85
(1.6  ↵3N  1.8) as a best alternative to the procedure
adopted in Ref [9] in part because it allows a consistent
treatment of the ratios for all A.
In Fig. 3 the plateau due to 2N-SRCs is clearly visible

for 1.3  ↵3N  1.5. In this region ↵3N ⇡ ↵2N [29], where
↵2N is the LC momentum fraction of the nucleon in the
2N-SRC. Because of this, we refer to the magnitude of
this plateau as:

R2(A,Z) =
3�A(x,Q2)

A�3He(x,Q2)
|1.3↵3N1.5 =

a2(A)

a2(3He)
. (7)

The horizontal line in the region of 1.3  ↵3N  1.5 is
given by the right hand side of Eq. (7), in which the values
of a2(3He) and a2(A) are taken from the last column of

5

Table II in Ref. [44], an average of the SLAC, JLAB
Hall C and JLAB Hall B results. The magnitude of the
horizontal solid line in the region of 1.6  ↵3N  1.8, is
the prediction of R3N (A,Z) ⇡ R

2

2N
(A,Z) which will be

explained in the next section. We assigned a 10% error to
this prediction (dashed lines) related to the uncertainty
of a2(A,Z) magnitudes across di↵erent measurements.

As Fig.3 shows the data at ↵3N > 1.6 are consistent
with the prediction of the onset of the new plateau in the
3N-SRC region and that its magnitude is proportional to
R

2

2N
.

With a set of 3He data obtained in the above discussed
approach we are able to estimate the ratios for other
nuclei, including, 9Be, 12C, 64Cu, and 197Au, albeit with
larger uncertainties[29].

The large experimental uncertainties in evaluation of
the ratios for 4

He (Fig.3) and for heavier nuclei[29] do not
allow us to claim unambiguously the onset of the plateau
at ↵3N � 1.6. However one can evaluate the validity of
such a plateau by comparing one- and two- parameter
fits to the experimental ratios in the ↵3N � 1.6 region.
The one-parameter fit in the 3N-region gives the values
(Rexp

3
) of the plateaus as seen in Figure 4(a) along with

our prediction of Eq. (10). Rexp

3
is also listed in Table I.

A two-parameter linear fit, returns errors on the param-
eters nearly as large as the parameters themselves and a
correlation matrix indicating that the second parameter
is redundant, providing no additional information.

V. 3N-SRCS AND THE pn DOMINANCE:

In Fig.1(b) the 3N-SRC is produced in the sequence
of two short-range NN interactions in which the nucleon
with the largest momentum interacts with the external
probe[29, 30]. The presence of short-range NN interac-
tions in 3N-SRC configurations tells us that the recently
observed pn-SRC dominance[12–14] is critical to our un-
derstanding of 3N-SRCs.

For 3N-SRCs one expects that only pnp or npn con-
figurations to contribute, with the pn short-range inter-
action playing role of a “catalyst” in forming a fast in-
teracting nucleon with momentum, pi (Fig.1(b) ). For
example, in the case of pnp configuration, the neutron
will play the role of intermediary in furnishing a large
momentum transfer to one of the protons with two suc-
cessive short range pn interactions. Quantitatively such
a scenario is reflected in the nuclear light-front density
matrix in the 3N-SRC domain, ⇢

N

A(3N)
(↵N ), being ex-

pressed through the convolution of two pn-SRC density
matrixes, ⇢N

A(pn)
(↵, p?) as follows:

⇢
N

A(3N)
(↵N , p?) ⇡

X

i,j

Z
F (↵0

i
, pi?,↵

0
j
, pj?)⇥

⇢
N

A(pn)
(↵0

i
, p

0
i?) ⇢

N

A(pn)

�
↵
0
j
, p

0
j?

�
d↵id

2
pj?d↵id

2
pj?,(8)

where (↵0
i/j

, p
0
i/j?), are the LC momentum fractions and

transverse momenta of spectator nucleons in the center of

mass of the pn SRCs. According to the pn dominance[17]:

⇢
N

A(pn)
(↵, p?) ⇡

a2(A,Z)

2XN

⇢d(↵, p?), (9)

where XN = Z/A or (A � Z)/A is the relative fraction
of the proton or neutron in the nucleus and ⇢d(↵, p?) is
the light-front density function of the deuteron at ↵ �
1.3. The factor F (↵0

i
, pi?,↵

0
j
, pj?) is a smooth function

of LC momenta and accounts for the phase factors of
nucleons in the intermediate state between the sequential
pn interactions with 0 < ↵

0
i/j

< 2.
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FIG. 4: (a) The A dependence of the experimental evaluation
of R3 compared with the prediction of Eq.10. (b) The A
dependence of a3(A,Z) parameter compared to a2(A,Z) of
Ref.[9].
It follows, from Eq.(8) and the expression of

⇢
N

A(pn)
(↵, p?) in Eq.(9), that the strength of 3N-SRCs is

/ a
2

2
(A,Z). This is evident by calculating R3 in Eq.(4)

using the relation (3) and the conjecture of Eq.(8), which
leads to[29]:

R3(A,Z) =
9

8

(�ep + �en)/2

(2�ep + �en)/3
R

2

2
(A,Z) ⇡

✓
a2(A,Z)

a2(3He)

◆2

,

(10)
where �ep ⇡ 3�en in the considered Q

2 ⇠ 3 GeV2 range.
As Fig.3 shows the prediction of R3 ⇡ R

2

2
is in agreement

with the experimental per nucleon cross section ratios of
4He to 3He targets. There is a similar agreement for other
nuclei including 9Be, 12C, 64Cu and 197Au[29].
To test the prediction of Eq.(10) quantitatively we

evaluated the weighted average of Rexp

3
(A,Z) for ↵3N >

5

Table II in Ref. [44], an average of the SLAC, JLAB
Hall C and JLAB Hall B results. The magnitude of the
horizontal solid line in the region of 1.6  ↵3N  1.8, is
the prediction of R3N (A,Z) ⇡ R

2

2N
(A,Z) which will be

explained in the next section. We assigned a 10% error to
this prediction (dashed lines) related to the uncertainty
of a2(A,Z) magnitudes across di↵erent measurements.

As Fig.3 shows the data at ↵3N > 1.6 are consistent
with the prediction of the onset of the new plateau in the
3N-SRC region and that its magnitude is proportional to
R

2

2N
.

With a set of 3He data obtained in the above discussed
approach we are able to estimate the ratios for other
nuclei, including, 9Be, 12C, 64Cu, and 197Au, albeit with
larger uncertainties[29].

The large experimental uncertainties in evaluation of
the ratios for 4

He (Fig.3) and for heavier nuclei[29] do not
allow us to claim unambiguously the onset of the plateau
at ↵3N � 1.6. However one can evaluate the validity of
such a plateau by comparing one- and two- parameter
fits to the experimental ratios in the ↵3N � 1.6 region.
The one-parameter fit in the 3N-region gives the values
(Rexp

3
) of the plateaus as seen in Figure 4(a) along with

our prediction of Eq. (10). Rexp

3
is also listed in Table I.

A two-parameter linear fit, returns errors on the param-
eters nearly as large as the parameters themselves and a
correlation matrix indicating that the second parameter
is redundant, providing no additional information.

V. 3N-SRCS AND THE pn DOMINANCE:

In Fig.1(b) the 3N-SRC is produced in the sequence
of two short-range NN interactions in which the nucleon
with the largest momentum interacts with the external
probe[29, 30]. The presence of short-range NN interac-
tions in 3N-SRC configurations tells us that the recently
observed pn-SRC dominance[12–14] is critical to our un-
derstanding of 3N-SRCs.

For 3N-SRCs one expects that only pnp or npn con-
figurations to contribute, with the pn short-range inter-
action playing role of a “catalyst” in forming a fast in-
teracting nucleon with momentum, pi (Fig.1(b) ). For
example, in the case of pnp configuration, the neutron
will play the role of intermediary in furnishing a large
momentum transfer to one of the protons with two suc-
cessive short range pn interactions. Quantitatively such
a scenario is reflected in the nuclear light-front density
matrix in the 3N-SRC domain, ⇢

N

A(3N)
(↵N ), being ex-

pressed through the convolution of two pn-SRC density
matrixes, ⇢N

A(pn)
(↵, p?) as follows:
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where (↵0
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0
i/j?), are the LC momentum fractions and

transverse momenta of spectator nucleons in the center of

mass of the pn SRCs. According to the pn dominance[17]:
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where XN = Z/A or (A � Z)/A is the relative fraction
of the proton or neutron in the nucleus and ⇢d(↵, p?) is
the light-front density function of the deuteron at ↵ �
1.3. The factor F (↵0
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, pj?) is a smooth function

of LC momenta and accounts for the phase factors of
nucleons in the intermediate state between the sequential
pn interactions with 0 < ↵
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FIG. 4: (a) The A dependence of the experimental evaluation
of R3 compared with the prediction of Eq.10. (b) The A
dependence of a3(A,Z) parameter compared to a2(A,Z) of
Ref.[9].
It follows, from Eq.(8) and the expression of

⇢
N

A(pn)
(↵, p?) in Eq.(9), that the strength of 3N-SRCs is

/ a
2

2
(A,Z). This is evident by calculating R3 in Eq.(4)

using the relation (3) and the conjecture of Eq.(8), which
leads to[29]:

R3(A,Z) =
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(10)
where �ep ⇡ 3�en in the considered Q

2 ⇠ 3 GeV2 range.
As Fig.3 shows the prediction of R3 ⇡ R

2

2
is in agreement

with the experimental per nucleon cross section ratios of
4He to 3He targets. There is a similar agreement for other
nuclei including 9Be, 12C, 64Cu and 197Au[29].
To test the prediction of Eq.(10) quantitatively we

evaluated the weighted average of Rexp

3
(A,Z) for ↵3N >

Onset of 3N dominance at α~ 1.6
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Correlations in p A→ p (backward) + p (backward) +X
measurements of Bayukov et al 86

�i = 120o

�i

pi ⇡ 0.5GeV,↵ ⇡ 1.4, pt ⇡ .25GeV
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pBe

pU

R2 =
1

�in
pA

d�(p + A� pp + X)/d3p1d3p2

d�(p + A� p + X)/d3p1d�(p + A� p + X)/d3p2

|p1| = |p2| � 500MeV/c

Curves is experimental fit.

the pattern of ψ dependence of R2 can  be reproduced
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