NEW RESULTS FROM E1206107 COLOR TRANSPARENCY (CT) EXPERIMENT IN PROTONS @ JLAB

Deepak Bhetuwal

Hall C Users Meeting

February 17, 2022

MISSISSIPPI STAT

Deepak Bhetuwal -- Hall C Users Meeting, Feb 17, 2022

- Color Transparency (CT) : Background / Introduction
- Past Experiments Status
- Need of The Experiment E1206107
- > Hydrogen Normalization Result
- > Systematic Study
- Carbon Result
- > What's Next?
- Summary

TRANSITION

Mapping the transition from the nucleon-meson degrees of freedom to the quark-gluon degrees of freedom of QCD.

NUCLEAR TRANSPARENCY

- Nuclear Transparency T is a useful observable in studying CT.
- Ratio of cross-sections for exclusive processes from nuclei to nucleons is termed as Nuclear Transparency.

 $T = \frac{(\sigma_A/A)}{-}$

- Nuclear cross section σ
 - Free nucleon cross section
- σ /Α - Bound nucleon cross section

 σ_{Λ} is parameterized as $= \sigma_{\Lambda} A^{\alpha}$

Experimentally: $\alpha = 0.72 - 0.78$, for π , κ , p

Deepak Bhetuwal -- Hall C Users Meeting, Feb 17, 2022

σ

GLAUBER NUCLEAR TRANSPARENCY

Traditional nuclear physics calculations (Glauber calculations) predict transparency to be energy independent .

CT PHENOMENA

Color transparency (CT) refers to the disappearance of initial and final state interactions in exclusive scattering at large 4-momentum transfer squared Q^2 .

Introduced by Mueller and Brodsky in 1982. It arises in picture of quark-gluon interactions only.

MISSISSIPPI STATE Deepak Bhetuwal -- Hall C Users Meeting, Feb 17, 2022

<u>MISSISSIPPI STATE</u>

STATE

Deepak Bhetuwal -- Hall C Users Meeting, Feb 17, 2022

7

CT PAST RESULTS - A(e,e'p)

Solid points = JLab Open points = other

Electron beam incident on various nuclear targets

Previous measurements consistent with Glauber prediction up to 8.0 (GeV/c)².

Perhaps we haven't gone high enough in Q²?

Makins, et al., Phys. Rev. Lett. 72, 1986 (1994) O' Neill, et al., Phys. Lett. B 351, 87 (1995) Abbott, et al., Phys. Rev. Lett. 80, 5072 (1998) Garrow, et al., Phys. Rev. C 66, 044613 (2002) Rohe, et al., Phys. Rev. C 72, 054602 (2005) Garino, et al., Phys. Rev. C 45, 780 (1992)

UNIVERSITY

CT PAST RESULTS - MESONS

CT is well established at high energies. Onset of CT has been measured in Mesons but not in Baryons.

CT This EXPERIMENT: E12-06-107

- E12-06-107 was the first experiment in the 12 GeV era
- Ran in Hall C at JLab in Spring 2018
- Coincidence trigger
- > Targets: 10 cm LH_2 , 6% rl ¹²C, ²⁷Al
- ~20 days of data taking
- E_{beam} of 6.4 GeV and 10.6 GeV
- Beam current up to 65 µA

¹² C, ²⁷ AI GeV	Q² [GeV²]	SHMS angle [°]	SHMS central p [GeV]	HMS angle [°]	HMS central p [GeV]
6. Beam	8.0	17.1	5.122	45.1	2.131
	9.5	21.6	5.925	23.2	5.539
10. Beam	11.5	17.8	7.001	28.5	4.478
	14.2	12.8	8.505	39.3	2.982

MISSISSIPPI STATE Deer

Deepak Bhetuwal -- Hall C Users Meeting, Feb 17, 2022

ing, Feb 17, 2022 **Jeffe**

HYDROGEN NORMALIZATION

Deepak Bhetuwal -- Hall C Users Meeting, Feb 17, 2022

SYSTEMATIC UNCERTAINTY

Source	Q^2 dependent uncert	ainty (%)
Spectrometer acceptance	2.6	
Event selection	1.4	
Tracking efficiency	0.5	
Radiative corrections	1.0	
Live time & Det. efficiency	0.5	
Source	Normalization uncert	ainty (%)
Source Free cross section	Normalization uncert 1.8	ainty (%)
Source Free cross section Target thickness	Normalization uncert 1.8 0.5	ainty (%)
Source Free cross section Target thickness Beam charge	Normalization uncert 1.8 0.5 1.0	ainty (%)
Source Free cross section Target thickness Beam charge Proton absorption	Normalization uncert 1.8 0.5 1.0 1.2	ainty (%)

Deepak Bhetuwal -- Hall C Users Meeting, Feb 17, 2022

ASYMMETRY VS MISSING MOMENTUM

SHELL STUDY

L. Frankfurt, M. Strikman, and M. Zhalov, Nuclear Physics A, vol. 515, no. 4, 1990, pp. 599–608.

D. Izraeli et al., Physics Letters B, vol. 781, Jun 2018, p. 95-98

SHELL STUDY – CONTD.

SHELL STUDY – CONTD.

SUMMARY

- First experiment to take data using High Momentum Spectrometer and new Super High Momentum Spectrometer in 12 GeV era in Jefferson Lab.
- Hydrogen normalization result agrees with world's ep elastic scattering data confirming that Hall C apparatuses are well-understood and well calibrated, and Monte Carlo Simulation is a good simulation of elastic scattering.
- Our results DO NOT SHOW the onset of Color transparency in protons up to 14.2 (GeV/c)², covering all kinematics of previous BNL results (proton momentum, Q²).
- An article has been published in Physical Review Letters (D. Bhetuwal et al., Phys. Rev. Lett., 126(8), 082301 (2021).).
- A long paper is being finalized to send to Collaboration for review and then to Physical Review C.
- Future experiments will measure CT effects with different reaction mechanisms and precision.

MISSISSIPPI STATE Deepak Bhetuwal -- Hall

Deepak Bhetuwal -- Hall C Users Meeting, Feb 17, 2022

ACKNOWLEDGEMENTS

- Dipangkar Dutta, Mark Jones, Dave Mack, Jeff A. Winger, Gautam Rupak Lan Tai Moong, Benjamin P. Crider.
- > John Matter, Holly Szumilla-Vance, Carlos Ayerbe Gayoso, Md. Latiful Kabir.

Thanks to the

Collaborators!

Deepak Bhetuwal -- Hall C Users Meeting, Feb 17, 2022

17, 2022 Jeffer

Work supported by DOE office of science (US DOE Grant Number: DE-FG02-07ER41528)

Jefferson Lab