This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

FROM PENTAQUARKS TO THE GLUONIC STRUCTURE **OF THE PROTON**

UPDATE FROM THE HALL CJ/Y-007 EXPERIMENT

SYLVESTER JOOSTEN sjoosten@anl.gov On behalf of the J/ψ -007 experiment

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

February 17, 2022 Hall C Collaboration Meeting

QUARKONIUM PRODUCTION NEAR THRESHOLD Probing the energy distribution of gluonic fields inside the proton and nuclei

- J/ψ well constrained for high energies
- Y(1S): not much available
- No electro-production data available ³
- Almost no data near threshold before the 12 GeV era of JLab

10⁻²

 10^{-3}

Near-threshold electro- and photoproduction of quarkonium

- Origin of proton mass, trace anomaly of the QCD EMT
- **Gluonic Van der Waals force**, possible quarkonium-nucleon/nucleus bound states
- Do quarkonia enable **pentaquarks** to exist?
- Mechanism for quarkonium production itself

 J/ψ at JLab '(1s) at EIC

S. Joosten Argonne 🛆 🛛 🕇

QUARKONIUM PHOTO-PRODUCTION The kinematics

Phase space limits defined by quarkonium direction

- Forward (with photon): $t = t_{min}$
- Backward (with proton): $t = t_{max}$
- Forward direction preferred: t-dependence ~exponential

DISCOVERY OF THE LHCB CHARMED PENTAQUARK (a)

$$\Lambda_b \to \Lambda^* J/\Psi \to (K^- p) J/\Psi$$

 $\Lambda_b \to K^- P_c \to K^- (p J/\Psi)$

- LHCb collaboration findings: two P_c states needed:
- Spin/parity not fully constrained:
 - 5/2+ and 3/2- (most likely)
 - 5/2- and 3/2+
 - 3/2- and 5/2+

The plot thickens... **NEW LHC-B RESULTS WITH 10X STATISTICS**

The **only** thresholds below which molecular bound states are expected in this mass range

LHCb-PAPER-2019-014 in preparation

The near-threshold masses and the narrow widths of $P_{c}(4312)^{+}$, $P_{c}(4440)^{+}$ and $P_{c}(4457)^{+}$ favor "molecular" pentaguarks with meson-baryon substructure!

14

However, we need to measure J^Ps to confirm molecular hypothesis, find isospin partners, ...

Can diquark substructure separated by a potential barrier [Maiani, Polosa, Riquer, PL, B778, 247 (2018)] produce width suppression? Are masses near thresholds just by coincidence? This hypothesis is not ruled out

IS THIS A REAL EXOTIC BARYON? We can confirm this at JLab!

- LHCb definitely saw something, but was it a pentaguark?
- 1. "True" pentaguark state: tightly bound 5-quark state
- 2. "Molecular" meson-baryon bound state
- 3. Kinematic enhancement through anomalous triangle singularity (ATS)
- Photoproduction ideal channel to distinguish:
- 1. "True" pentaquark: strong s-channel resonance 2. "Molecular": small s-channel resonance (less overlap with γp and $J/\psi p$ states)
- **3. ATS** not a factor in photoproduction

Jefferson Lab the perfect place to search for P_c in photoproduction

MAXIMIZING THE SENSITIVITY Maximum sensitivity for s-channel resonance at high t

Z.-E. Meziani, S. Joosten et al., arXiv:1609.00676 [hep-ex] K. Hafidi, S. Joosten et al., Few Body Syst. 58 (2017) no.4, 141

JLAB EXPERIMENT E12-16-007 J/ψ-007: Search for the LHCb Pentaquark

- Ran February 2019 for ~8 PAC days
- High intensity real photon beam (50µA electron beam on a 9% copper radiator)
- 10cm liquid hydrogen target
- Detect J/ψ decay leptons in coincidence
 - Bremsstrahlung photon energy fully constrained

Incident beam

CLEAR J/W SIGNAL WITH MINIMAL BACKGROUND

settings	HMS	SHMS	target	charge [C]	goal
setting 1	$19.1^{o} \text{ at } +4.95 \text{GeV}$	17.0° at -4.835GeV	LH2 with radiator	5.2	low-t and high energy
			dummy with radiator	0.6	target wall
			LH2, no radiator	0.1	electroproduction
setting 2	$19.9^{o} \text{ at } +4.6 \text{GeV}$	20.1° at -4.3GeV	LH2 with radiator	8.2	low- t and low energy
			dummy with radiator	0.3	target wall
setting 3	$16.4^{o} \text{ at } +4.08 \text{GeV}$	30.0° at -3.5GeV	LH2 with radiator	13.8	high-t
setting 4	$16.5^{o} \text{ at } +4.4 \text{GeV}$	24.5° at -4.4 GeV	LH2 with radiator	6.9	medium-t
			dummy with radiator	0.2	target wall

U.S. DEPARTMENT OF Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

WHAT DOES A **PURE T-CHANNEL** BACKGROUND LOOK LIKE?

Need model-independent fit shape to fit the t-channel background **inside the** spectrometer acceptance

A gaussian shape, mostly driven by the spectrometer acceptance, does a good job describing both (very different!) Monte-Carlo models

For now used as independent shapes between the settings, could in principle gain even more sensitivity by leveraging the 2D t-profiles of the cross section

P_c resonances calculated at GlueX 90% upper limit from MC (JPacPhoto + Detector Simulation)

Difficult to separate higher-mass states due to radiative and 11 detector smearing, and limited statistics (coarse binning)

HIGH-T SETTINGS CRUCIAL FOR SENSITIVITY Improved sensitivity at high t for a given coupling

BACKGROUND SUBTRACTION Counting J/ψ

- Scale down measured background within each experimental bin
- Fit background with POL2 curve around J/ψ invariant mass window to remove statistical fluctuations
- Subtract fit curve within J/ψ integration window from measure spectrum
- Use both narrow and wide window to constrain systematic uncertainties due to background subtraction and model description of the J/ψ radiative tail

4% scale uncertainty on cross section

SIGNIFICANCE FIT

Fit 1: bare Gaussian shape describes the cross section well

Fit 2: Signal + background at GlueX upper limit (90% confidence interval). The resonances lead to major tension with the data at high-t.

Fit 3: Same as 2, but with Pc at upper limit (90% confidence interval) from the preliminary J/ψ -007 results themselves

The data suggest a stringent upper limit on the resonant cross section (see next slide).

RESULTS AND IMPLICATIONS Cross-section at the resonance peak for model-independent upper limits

Upper limit for P_c cross section almost order of magnitude below GlueX limit.

Results are inconsistent with reasonable assumptions for true 5-quark states.

Door is still open for molecular states, but will be very hard to measure in photoproduction due to small overlap with both γp initial state and J/ ψp final state.

To learn more we need a large-acceptance high-intensity photoproduction experiment, and potentially access to polarization observables. This can be achieved with the SoLID-J/ ψ experiment

(dn) (q ψ/L Pc(4440) $\sigma(\gamma p$

significance (nσ)

2D J/W MEASUREMENT IN HALL C

2D cross sections will provide access to the matter radius of the proton

Independent muon and electron channels (only electron results shown)

Largest dataset (>4000 counts) of J/ψ produced with a real photon beam

First 2D J/ ψ cross section results near threshold

t-dependence between 9.1-10.6GeV in bins of 150 MeV

2D J/Ψ CROSS SECTION RESULTS IN A.U. t-dependence consistent with a dipole slope

AN ENERGY SCAN OF THE GLUON RADIUS First ever access of the energy dependence of the gluon radius in two models

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

- Mass radii can be extracted for each of the 10 energy bins by means of a dipole fit
- Figure shows results following the approach from Mamo-Zahed (Phys. Rev. D 101, 086003, 2020).
- Similar results can be obtained following D. Kharzeev's approach (Phys. Rev. D 104, 054015, 2021)
- Data can also be used to constrain the gravitational form factors falling the approach from Guo-Ji-Liu (Phys. Rev. D 103, 096010, 2021)
- The results can also be used to study the energymomentum tensor of QCD following the approach from Hatta-Rajan-Yang (Phys. Rev. D 100, 014032, 2019)

This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

SUMMARY

Near-threshold electro- and photoproduction of quarkonium

- **Origin of proton mass**, trace anomaly of the QCD EMT
- Gluonic Van der Waals force, possible guarkonium-nucleon/nucleus bound states
- Do quarkonia enable **pentaquarks** to exist?
- **Mechanism** for quarkonium production itself

Hall C J/ ψ -007 experiment sees no evidence for hidden-charm pentaguarks in photoproduction

First paper on the pentaguark, and second paper on 2D J/ ψ crosssections) almost ready for collaboration review!

THE END

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

12 GEV J/Ψ EXPERIMENTS AT JEFFERSON LAB

Hall D - GlueX observer the first J/ψ at JLab A. Ali et al., PRL 123, 072001 (2019)

Hall B - CLAS12 has experiments to measure TCS + J/ψ in photoproduction as part of Run Groups A (hydrogen) and B (deuterium): E12-12-001, E12-12-001A, E12-11-003B

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Hall C has the J/ψ -007 experiment (E12-16-007) to search for the LHCb hidden-charm pentaquark

Hall A has experiment E12-12-006 at SoLID to measure J/ψ in electro- and photoproduction, and an LOI to measure double polarization using SBS

J/Ψ EXPERIMENTS AT JLAB COMPARED

	GlueX HALL D	HMS+SHMS HALL C	CLAS 12 with upgrade ¹ HALL B	SoLID HALL A
J/ψ counts (photo-prod.)	469 published ~10k phase I + II	4k	14k	804k
J/ψ Rate (electro- prod.)	N/A	N/A	1k	21k
Acceptance	4π	<4x10-4	<2π	2π
When?	Finished/Ongoing	Finished	Ongoing/Proposed	~8 years?

¹The CLAS12 projected count rates assume the proposed CLAS12 luminosity upgrade to 2x10³⁵/cm²/s

J/Y NEAR THRESHOLD IN HALL D

- 1D cross section (~469 counts)
- Trends significantly higher than old measurements
- Also released a single 1D t-profile
- Published upper limits for s-channel pentaquark resonances at 90% confidence level
 - ID limits on $\sigma(\gamma p \rightarrow Pc) \times \Gamma(Pc \rightarrow J/\psi p)$: resp. <4.6nb, <1.8nb, and <3.9nb at 90%
- Still consistent with pentaguark and molecular models
- 4x more statistics being analyzed

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

4% scale uncertainty on cross section

COMPARISON WITH T-CHANNEL MODEL CALCULATION

Measured 1D results show decent agreement with predictions from the JPac Pomeron model (constrained by old world data + GlueX 2019 results)

Largest deviations at lower energies

To get more sensitivity to details in the nearthreshold cross section, we need the 2D cross section results (see next slides)

