Update on the 12 GeV EMC Effect Experiment in Hall C

Cameron Cotton

Hall C Users Meeting
February 17th, 2022

This work is supported by U.S. Department of Energy under Award numbers DE-SC0014434 and DE-SC0014664
Outline

Physics Motivation

E12-10-008 Physics Goals

E12-10-008 Targets & Kinematics

Phase I Preliminary Results
Motivation: Discovery of the EMC Effect

Prediction (Pre-1983)

\[
F_2^A(x) = ZF_2^p(x) + NF_2^n(x)
\]

Experiment

Motivation: Discovery of the EMC Effect

PREDICTION (PRE-1983)

$$F_2^A(x) = Z F_2^p(x) + N F_2^n(x)$$

EXPERIMENT

Quark distributions are modified in nuclei???
Motivation: Discovery of the EMC Effect

- The EMC Effect remains one of the biggest unsolved mysteries in nuclear physics.
Motivation: Discovery of the EMC Effect

- The EMC Effect remains one of the biggest unsolved mysteries in nuclear physics.
- **1000s of papers** have been written about the EMC Effect in the last 40 years - **still no consensus.**
Motivation: Quantifying the EMC Effect

• The “size” of the EMC Effect in a given nucleus is determined from the slope in the range: $0.35 < x < 0.7$
Motivation: Quantifying the EMC Effect

- The “size” of the EMC Effect in a given nucleus is determined from the slope in the range: $0.35 < x < 0.7$

- A density-dependent fit does an alright job for larger nuclei, but totally fails for light ($A<12$) nuclei.
Motivation: Quantifying the EMC Effect

• The “size” of the EMC Effect in a given nucleus is determined from the slope in the range: $0.35 < x < 0.7$

• A density-dependent fit does an alright job for larger nuclei, but totally fails for light (A<12) nuclei.

• What is the driving force behind the EMC Effect?
Physics Goals: EMC Effect in 3He

- 3He/D ratio requires a large isoscalar correction to extract the EMC Effect.
Physics Goals: EMC Effect in 3He

- 3He/D ratio requires a large isoscalar correction to extract the EMC Effect.

- Strong model dependency for the isoscalar correction is avoided by measuring 3He/(D+p) instead.
Physics Goals: EMC Effect in 3He

• 3He/D ratio requires a large isoscalar correction to extract the EMC Effect.

• Strong model dependency for the isoscalar correction is avoided by measuring 3He/(D+p) instead.

• Unfortunately, this introduces a problem, as the proton has no Fermi Motion to smooth resonance contributions (dotted red line).
Physics Goals: EMC Effect in 3He

- 3He/D ratio requires a large isoscalar correction to extract the EMC Effect.

- Strong model dependency for the isoscalar correction is avoided by measuring 3He/(D+p) instead.

- Unfortunately, this introduces a problem, as the proton has no Fermi Motion to smooth resonance contributions (dotted red line).

- Resonance structure pushed out to x>0.8 at large Q2, allowing for comparison with 3He/D data out to larger x to validate isoscalar correction model.
Physics Goals: EMC Effect in Light Nuclei

- E12-10-008 will be the first experiment to measure the EMC Effect in several light nuclei including 6Li and 7Li.
Physics Goals: EMC Effect in Light Nuclei

• E12-10-008 will be the first experiment to measure the EMC Effect in several light nuclei including 6Li and 7Li.

• Light nuclei are amenable to theorists’ calculations that can exact nuclear wave functions.
Physics Goals: EMC Effect in Light Nuclei

• E12-10-008 will be the first experiment to measure the EMC Effect in several light nuclei including 6Li and 7Li.

• Light nuclei are amenable to theorists’ calculations that can exact nuclear wave functions.

• Light nuclei provide a great environment to study nuclear structure and clustering within the nucleus.
Physics Goals: Flavor Dependence of EMC Effect

- We will study possible flavor dependence of the EMC Effect through measurements of ^{40}Ca and ^{48}Ca.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{40Ca/48Ca Relative Norm. (1.4\%)}
\end{figure}
Physics Goals: Flavor Dependence of EMC Effect

• We will study possible **flavor dependence of the EMC Effect** through measurements of 40Ca and 48Ca.

• The flavor-dependent CBT Model predicts a ~3% difference between 40Ca and 48Ca at $x=0.6$.

• On the other hand, we would expect a difference of <1% if there is no flavor dependence.
Physics Goals: n/p ratio

• We will be able to extract the n/p ratio in nuclei by comparing cross sections of adjacent nuclei.

• This may provide insight into nuclear modeling that is required to extract n/p cross sections from D/p.
Physics Goals: EMC-SRC Correlation

• There is a strong correlation between the size of the EMC Effect and SRCs.

• With data from our experiment and the x>1 experiment that will be discussed in the next talk, we will add many more nuclei to investigate this connection.
Outline

Physics Motivation

E12-10-008 Physics Goals

E12-10-008 Targets & Kinematics

Phase I Preliminary Results
Upcoming Run: Targets

- Coverage of large range of target masses, densities, and n/p values.
- Many new light targets (cluster structure).
Upcoming Run: Kinematics

• Kinematic coverage for both EMC and x>1 experiments.
• EMC and x>1 will run in parallel in the hall, utilizing both the SHMS and HMS detectors.
• Coverage of a large range of angles to examine Q2 dependence of structure functions.
• Total 23 PAC days for Phase I and II
 • Phase I completed in 2018 (2 days)
Outline

Physics Motivation

E12-10-008 Physics Goals

E12-10-008 Targets & Kinematics

Phase I Preliminary Results
Preliminary Results: Canonical EMC Plots

- Phase I – Collected data for several light nuclei
- Data showing characteristic EMC Effect shape.
Preliminary Results: EMC Slope v. Density

- Filled points are 12 GeV data
- Unfilled points are 6 GeV data
Summary

• After 39 years and 1000s of papers, we still don’t know the cause of the EMC Effect.
Summary

• After 39 years and 1000s of papers, we still don’t know the cause of the EMC Effect.
 • E12-10-008 will add EMC data for several new nuclei
 • Light nuclei will provide insight to **nuclear clustering**
 • Light nuclei are also more amenable to comparison with theoretical calculations
 • 40Ca and 48Ca will allow us to study **possible flavor dependence of the EMC Effect**, as predicted in several models.
 • More nuclei for **EMC-SRC comparison**

![Graph of EMC data with various nuclei shown]
Summary

• After 39 years and 1000s of papers, we still don’t know the cause of the EMC Effect.

• E12-10-008 will add EMC data for several new nuclei
 • Light nuclei will provide insight to nuclear clustering
 • Light nuclei are also more amenable to comparison with theoretical calculations
 • 40Ca and 48Ca will allow us to study possible flavor dependence of the EMC Effect, as predicted in several models.
 • More nuclei for EMC-SRC comparison.

• Preliminary analysis of Phase I (2018) data looks promising – plots show characteristic shape of the EMC Effect
Summary

• After 39 years and 1000s of papers, we still don’t know the cause of the EMC Effect.

• E12-10-008 will add EMC data for several new nuclei
 • Light nuclei will provide insight to nuclear clustering
 • Light nuclei are also more amenable to comparison with theoretical calculations
 • 40Ca and 48Ca will allow us to study possible flavor dependence of the EMC Effect, as predicted in several models.
 • More nuclei for EMC-SRC comparison.

• Preliminary analysis of Phase I (2018) data looks promising – plots show characteristic shape of the EMC Effect

• Phase II will run this summer!
Questions?