
Parsl: A Parallel Programming Library
for Python
Kyle Chard (chard@uchicago.edu)
On behalf of the Parsl community (including Yadu Babuji, Ben Clifford, Ian Foster, Dan
Katz, Zhuozhao Li, Mike Wilde, Anna Woodard)

http://parsl-project.org

2

Example workload: simulating images from the Vera C. Rubin
Observatory

Bundler

189 sensors
x ~10,000s
of instance
catalogs

Node-sized bundles
(64 tasks each)

JSON description

Catalog 1 189
tasks

x 4000 nodes

Executor

x 189 x ~10,000s

256K cores
for 3 days

Catalog 2

Catalog 3

128K cores
for 3.5 days

x 2000 nodes

3

Example workload: Applying extreme-scale AI to screen
billions of druglike molecules against COVID-19 proteins

CHEMICAL
LIBRARY DATABASE

AND MORE

known
molecules4B

COMPUTING
RESOURCES

CANONICALIZATION COMPUTE FEATURES DEEP LEARNING
FILTERING

FINGERPRINTING SIMILARITY SEARCH

GENERATE IMAGES CNN FILTERING

4

Distribution, parallelism, and composition

Parallel and distributed computing is ubiquitous
– Increasing data sizes combined with plateauing sequential processing power

Software is increasingly assembled rather than written
– High-level language to integrate and wrap components from many sources

Python (and the SciPy ecosystem) has established itself as one of the most
productive and popular environments for research

– Thriving ecosystem of libraries, tools, Jupyter, etc.

5

Parsl: parallel programming in Python

Apps define opportunities for parallelism
• Python apps call Python functions
• Bash apps call external applications

Apps return “futures”: a proxy for a result
that might not yet be available

Apps run concurrently respecting dataflow
dependencies. Natural parallel programming!

Parsl scripts are independent of where they
run. Write once run anywhere!

pip install parsl

Try Parsl: https://parsl-project.org/binder

6

Parsl’s dataflow programming model delivers intuitive parallel
programming

▪ Programming paradigm in which program
is assembled as a directed graph of data
flowing between tasks

▪ Intuitive way to think about parallelism
(tasks run independently when data slice ready)

▪ Parsl’s dataflow model allows data to be
passed between Apps
– Python types and objects

– Files (local or via HTTP, FTP, or Globus)

7

Data-driven example: parallel geospatial analysis

 Land-use Image processing pipeline for the MODIS remote sensor

Analyze

Landuse

Colorize

Mark

Assemble

8

Expressing parallelism using Parsl

1) Wrap the science applications as Parsl Apps:
@bash_app
def landuse(img, outputs=[]):
 return ‘./landuse_sim.sh {} {}’.format(img, outputs[0])

@python_app
def colorize(img, num_chunks):
 return color_package(img, num_chunks)

@python_app
def analyze(land_chunks, color_chunks):
 return combine(land_chunks, color_chunks)

9

lchunks = []

for i in range (nchunks):
 lchunks.append(landuse(img, outputs=[File(‘l%s.txt' % i)]))

colored = colorize(img, num_chunks=5)

results = analyze(lchunks, colored)

Expressing a many task workflow in Parsl

2) Execute the parallel workflow by calling Apps:

10

Decomposing parallelism into a dynamic
task-dependency graph for distributed execution

Parsl

11

Enabling portable Parsl programs: providers

The same Parsl program can be run locally, on grids, clouds,
or supercomputers

Growing support for various schedulers and cloud vendors

12

Separation of code and execution

Choose execution environment
at runtime. Parsl will direct
tasks to the configured
execution environment(s).

13

Parsl implements a Python’s Concurrent.futures
executor (runtime) interface
High-throughput executor (HTEX)

– Pilot job-based model with multi-threaded manager deployed on workers

– Designed for ease of use, fault-tolerance, etc.

– <2000 nodes (~60K workers), Ms tasks, task duration/nodes > 0.01

Extreme-scale executor (EXEX)*
– Distributed MPI job manages execution. Manager rank communicates

workload to other worker ranks directly

– Designed for extreme scale execution on supercomputers

– >1000 nodes (>30K workers), Ms tasks, >1m task duration

Low-latency Executor (LLEX)*
– Direct socket communication to workers, fixed resource pool, limited features

– 10s nodes, <1M tasks, <1m tasks

Others: WorkQueue, RADICAL-Cybertools, Flux

14

Parsl executors scale to 256K
concurrent workers

HTEX and EXEX outperform other
Python-based approaches

Parsl scales to more than 250K
workers (8K nodes) and ~2M tasks

Strong scaling (50K 1s tasks)

Weak scaling (10 1s tasks per worker)

Babuji et.al. "Parsl: Pervasive Parallel Programming in Python."
ACM International Symposium on High-Performance Parallel and
Distributed Computing (HPDC). 2019.

15

Parsl is being used in a wide range of scientific applications

E

C

A B

D

G

• Machine learning to predict
stopping power in materials

• Protein and biomolecule
structure and interaction

• LSST simulation and weak
lensing using sky surveys

• Cosmic ray showers in
QuarkNet

• Information extraction to
classify image types in papers

• Materials science at the
Advanced Photon Source

• Machine learning and data
analytics in materials

A

B

C

D

E

F

G

F

https://parsl-project.org/parslfest.html

16

Parsl is an open-source Python community (parsl-project.org)

17

funcX: Parsl as a service for remote computing

Common Parsl use case: I want to run my computation on one or more remote
clusters, clouds, supercomputers from my PC

 Cloud-hosted managed compute service built on Parsl

18

FuncX: Fire-and-forget remote function execution

funcX Service:
– Single reliable cloud service (REST)

– Register, share, run functions

– Fire-and-forget execution: funcX will manage execution,
store results in the cloud, handle errors, etc.

Endpoints:
– User-deployed and managed

– Dynamically provision resources, deploy containers,
execute functions, catch exceptions, etc.

– Exploit local architecture/accelerators

Choose where to execute functions
– Closest, cheapest, fastest, accelerators …

F(ep1,1)
F(ep1, 2)
F(ep1, 3)

funcx.org

19

Parsl provides productive, safe, scalable, and flexible
parallelism in Python

Productive: Python with minimal new constructs (integrated with the
growing SciPy ecosystem and other scientific services)

Safe: deterministic parallel programs through immutable input/output
objects, dependency task graph, etc.

Scalable and portable: efficient execution from laptops to the largest
supercomputers

Flexible: programs composed from existing components and then applied
to different resources/workloads

ExaWorks: ECP Workflows Project

● Community-based project to support workflows in
ECP
○ Users, workflow developers, facilities, vendors

● Technical development
○ ExaWorks SDK: packaged and compatible workflows

components
○ PSI/J: Asynchronous Python library for scheduler portability

● Community development
○ Organizing a series of summits to bring the workflows

community together
○ https://exaworks.org/summit.html

● Contributing to the Workflows Community Initiative
(https://workflows.community)

https://exaworks.org

https://exaworks.org/summit.html
https://exaworks.org/summit.html

21

Questions?

U.S. DEPARTMENT OF

ENERGY

parsl-project.org

parsl-project.org/binder

