#*parsl

Parsl: A Parallel Programming Library
for Python

Kyle Chard (chard@uchicago.edu)

On behalf of the Parsl community (including Yadu Babuiji, Ben Clifford, lan Foster, Dan
Katz, Zhuozhao Li, Mike Wilde, Anna Woodard)

http://parsl-project.org

=4 THE UNIVERSITY OF X ILLINOIS

& C H ICAG O ArgOn ne ° NCSA | National Center for

NATIONAL LABORATORY Supercomputing Applications

Example workload: simulating images from the Vera C. Rubin
Observatory

189 EEE
tasks =. =
-

A 7 |m=mgER
Bundler |E== BEE /e, IR
mem mEm | Executor \S Gam

EEN f\lll
O

Catalog 1

Catalog 2

Catalog 3

Node-sized bundles
(64 tasks each) x 4000 nodes

189 sensors JSON description

x ~10,000s
of instance E
catalogs 256K cores

#*parsl for 3 days for 3.5 days

Example workload: Applying extreme-scale Al to screen
billions of druglike molecules against COVID-19 proteins

CHEMICAL COMPUTING
LIBRARY DATABASE RESOURCES
CANONICALIZATION COMPUTE FEATURES DEEP LEARNING
FILTERING
4 B known -
molecules e A
® i
© o 0 o
@ @ "3 @

@P.. cos

eMolecules’

cureFFI MOSES
ZINC15

0 ojo ‘/v'
] 24
'“*;!/” e
C, SureChEMBL GENERATE IMAGES CNN FILTERING W e

Q @)

Pub@hem e o ®
— O W B @
o ®io o
= e @ e e
i oo o @ o e
¢ ‘@
@ nputLayer @ Hidden Layer @ Output Layer

- parsl

Distribution, parallelism, and composition

Parallel and distributed computing is ubiquitous
— Increasing data sizes combined with plateauing sequential processing power

Software is increasingly assembled rather than written
— High-level language to integrate and wrap components from many sources

Python (and the SciPy ecosystem) has established itself as one of the most
productive and popular environments for research

— Thriving ecosystem of libraries, tools, Jupyter, etc.

- parsl 4

Parsl: parallel programming in Python

Apps define opportunities for parallelism pip install parsl
* Python apps call Python functions
* Bash apps call external applications

@python app
def hello ():

Apps return “futures”: a proxy for a result return 'Hello World!' P pgth()n
that might not yet be available print (hello().result())
Hello World!
Apps run concurrently respecting dataflow @bash_app
) . def echo hello(stdout='echo-hello.stdout"):
dependencies. Natural parallel programming! return 'echo "Hello World!""

echo hello().result() BASH

EEEEEEEEEEEEEEEEEEEE

Parsl scripts are independent of where they with open('echo-hello.stdout’, 'r') as ¥:

. print(f.read())
run. Write once run anywhere!
Hello World!

Try Parsl: https://parsl-project.org/binder

#parsl

- parsl

.
Parsl’s dataflow programming model delivers intuitive parallel

programming 4 .
= Programming paradigm in which program jﬁ; %;
is assembled as a directed graph of data | \ *
flowing between tasks | \
= |ntuitive way to think about parallelism ;: ’;‘1

(tasks run independently when data slice ready) A_ K

= Parsl’s dataflow model allows data to be
passed between Apps

— Python types and objects
— Files (local or via HTTP, FTP, or Globus)

Data-driven example: parallel geospatial analysis

6 78 91011121314 15 16 17 18 10 20 21 2223 24 25 26 27 2829 30 1 R BN I
[T T T EEEN
[] - []

0
1
5 n
3
4 24e” i .
5| | B - o I S | |
6 | I®! ~ ;
7 ko] cealis 3
8 .

9 i :
10 0
n| ™ R FEET N
12 3 g
13
14
15 3 = -
16 T T 5 s s
17 N O I A A
-.-.:;»:‘::‘:v::;n
i l L4
n n—— 275 BT ——
1 p: g [e o . 2 r A
L . S :
§ i 2 g St 42
i -
o A E J
o B 7
. !/ -
y 2 - -
0! 1 11v0

Land-use Image processing pipeline for the MODIS remote sensor

#parsl 7

Expressing parallelism using Parsl

1) Wrap the science applications as Parsl Apps:

@bash app
def (img, outputs=[]):
‘./landuse sim.sh {} {}’.format (img, outputs[0])

@python app
def (1mg, num chunks) :
color package (img, num chunks)

@python app
def (land chunks, color chunks):
combine (land chunks, color chunks)

#parsl s

Expressing a many task workflow in Parsl

2) Execute the parallel workflow by calling Apps:
lchunks = []

for 1 in range (nchunks):

lchunks.append ((img, outputs=[File(‘l%s.txt' % 1)]))
colored = (imgl‘;gﬁ/éﬁ:;;s=5)
results = (lchunks, colé&ed)

#parsl

Decomposing parallelism into a dynamic
task-dependency graph for distributed execution

' Jjupyter parsl-introduction (unsaved changes) A

File Edit View Insert Cell Kemnel Widgets Help Not Trusted | Python3 O

B+ < @ B A ¥ | MRun B C W | Makdwn |

Monte Carlo workflow

Many scientific applications use the monte-carlo method to compute results. P /
If a circle with radius r is inscribed inside a square with side length 2r then the area of the circle is xr? and the area of the square is (2r)z. Thus, if N a ‘ S

uniformly distributed random points are dropped within the sugare then approximately N z/4 will be inside the circle.

Each call to the function pi() is executed independently and in parallel. The avg_three() app is used to compute the average of the futures that were
returned from the pi() calls.

The dependency chain looks like this:

App Calls pi() pi() pi()

\ | /
Futures El b c
Y1 o
App Call avg_points()
|
Future avg_pi
In []: # App that estimates pi by placing points in a box
@python_app
def pi(total):
import random
Set the size of the box (edge Length) in which we drop random points
edge_length = 10000
center = edge_length / 2
2 = center ** 2 D
count = @ D D I
for i in range(total): El D
Drop a random point in the box. I
X,y = random.randint(1, edge_length),random.randint(1, edge_length) D
Count points within the circle D D I
if (x-center)**2 + (y-center)**2 < c2:
count += 1 I

return (count*4/total)

App that computes the average of the values

@python_app
def avg_points(a, b, ¢):
B amazon

Estimate three values for pi
a, b, c = pi(10**6), pi(10**6), pi(10**6)

s e e e iR Web Services Extreme Science and Engineering

avg_pi = avg_points(a, b, c) Discovery Environment

Print the results
print("A: {8:.5f)} B: {1:.5f} C: {2:.5f}".format(a.result(), b.result(), c.result()))
print(“Average: {8:.5f}".format(avg_pi.result()))

#parsl 10

Enabling portable Parsl programs: providers

® Configuration

How-to Configure

The same Parsl| program can be run locally, on grids, clouds,
or supercomputers

Comet (SDSC)
Cori (NERSC)
Stampede2 (TACC)
Growing support for various schedulers and cloud vendors Theta (ALCF)
Cooley (ALCF)

Swan (Cray)

CC-IN2P3
Midway (RCC, UChicago)
Open Science Grid

Amazon Web Services

Ad-Hoc Clusters

Y Google Cloud

#parsl

Further help

11

Separation of code and execution

[©] sample_configs.py [] runner.py
... imports import parsl
import os
threads_config = Config(from sample_configs import threads_config, cori_config
executors=[ThreadPoolExecutor()]
) if os.environ.get('PIPELINE_ENV', 'test'):

parsl.load(threads_config)
cori_config = Config(else:

PR 9=] parsl.load(gori_config)
HighThroughputExecutor (
label="Cori_HTEX_multinode',
provider=SlurmProvider (
'debug', # Partition / QOS

#... rest of the pip

nodes_per_block=2,
walltime="00:20:00",
launcher=SrunLauncher ()

Choose execution environment
at runtime. Pars| will direct

)) tasks to the configured
1) execution environment(s).

12

#parsl

Parsl implements a Python’s Concurrent.futures

executor (runtime) interface
High-throughput executor (HTEX)

— Pilot job-based model with multi-threaded manager deployed on workers
— Designed for ease of use, fault-tolerance, etc.
— <2000 nodes (~60K workers), Ms tasks, task duration/nodes >0.01

Extreme-scale executor (EXEX)*

— Distributed MPI job manages execution. Manager rank communicates
workload to other worker ranks directly

— Designed for extreme scale execution on supercomputers
— >1000 nodes (>30K workers), Ms tasks, >1m task duration

Low-latency Executor (LLEX)*
— Direct socket communication to workers, fixed resource pool, limited features
— 10s nodes, <1M tasks, <1m tasks

Others: WorkQueue, RADICAL-Cybertools, Flux

- parsl 13

Pars|l executors scale to 256K
concurrent workers

HTEX and EXEX outperform other
Python-based approaches

Parsl scales to more than 250K
workers (8K nodes) and ~2M tasks

 —
Strong scaling (50K 1s tasks)

Prabicwok Maximum Maximum Maximum :
of workers'| # of nodes’| tasks/second*
Parsl-IPP 2048 64 330
Parsl-HTEX 65536 2048 1181
Parsl-EXEX 262 144 8192 1176
FireWorks 1024 32 4
Dask distributed 4096 128 2617

Babuiji et.al. "Parsl: Pervasive Parallel Programming in Python."
ACM International Symposium on High-Performance Parallel and

Distributed Computing (HPDC). 2019.

104§
w3 T~ -8 i
o 107) - P
E 5 R € ’\ - HTEX
c 103 e o— EXEX
-% 101; \‘~~\\ Dask
TE:_ TN~ FireWorks
5 10= —-— Ideal
o 1

1
10 i R BT
10’ 10° 10° 10* 10°
Number of workers
Weak scaling (10 1s tasks per worker)
— 10%
]
o] HTEX
£ 1034 *N EXEX
= 1 —e— IPP
o
9 . Dask
O 10% .
a . FireWorks
£ ---- Ideal
O : 7
b 1 lIIIlllbll IIIIIIl I lllllllb3l IlIIIII 1 Illll]:lb5

Number of workers

Parsl is being used in a wide range of scientific applications

Machine learning to predict
stopping power in materials

£2

Protein and biomolecule
structure and interaction

LSST simulation and weak
lensing using sky surveys

Cosmic ray showers in
QuarkNet

Information extraction to
classify image types in papers

Materials science at the
Advanced Photon Source

© ® " ® 0 ®

Machine learning and data =

. . = e
analytics in materials

o Re-analyze

Red indicates higher statistical
confidence in data

https://parsl-project.org/parsifest.html o .

#parsl

Parsl is an open-source Python community (parsl-project.org)

- PaI'Sl/parSI Public <X Edit Pins ~ ® Unwatch 27 ~ Y Fork 97 Starred 314 -

<> Code () Issues 314 i1 Pull requests 10 Q) Discussions () Actions (@ Security |7 Insights 83 Settings

¥ master ~ Go to file Add file ~ m About Contributors 63

oo @ § DS OB
‘ benclifford Remove logger.warn (replace with warning) - this is ca... .. 7 days ago @ 3,805 I|brary E i 9 e

+ 52 contributors

2 CO

n .) h . " El % 2 ‘ F ¥
" parsl 16

funcX: Parsl as a service for remote computing

Common Parsl use case: | want to run my computation on one or more remote
clusters, clouds, supercomputers from my PC

%
unc 64

Cloud-hosted managed compute service built on Parsl

#parsl 17

FuncX: Fire-and-forget remote function execution

funcX Service:

— Single reliable cloud service (REST)
— Register, share, run functions

— Fire-and-forget execution: funcX will manage execution,
store results in the cloud, handle errors, etc.

Endpoints:
— User-deployed and managed

— Dynamically provision resources, deploy containers,
execute functions, catch exceptions, etc.

— Exploit local architecture/accelerators

Choose where to execute functions
— Closest, cheapest, fastest, accelerators ...

f uncx funcx.org

Arzonn: A

? iR

@ O =—~

18

Parsl provides productive, safe, scalable, and flexible
parallelism in Python

Productive: Python with minimal new constructs (integrated with the
growing SciPy ecosystem and other scientific services)

Safe: deterministic parallel programs through immutable input/output
objects, dependency task graph, etc.

Scalable and portable: efficient execution from laptops to the largest
supercomputers

Flexible: programs composed from existing components and then applied
to different resources/workloads

- parsl 19

Applications

ExaWorks: ECP Workflows Project

e Community-based project to support workflows in
ECP
o Users, workflow developers, facilities, vendors

e Technical development
o ExaWorks SDK: packaged and compatible workflows
components
o PSI/J: Asynchronous Python library for scheduler portability

Exascale Systems
e Community development

System System System System
o Organizing a series of summits to bring the workflows
community together
o htt[_)s://e_xaworks.orq/summit.html | - Exaworks PSI/J
e Contributing to the Workflows Community Initiative
(https://workflows.community) WARSL e . T LpC
workflows Resource | Resource | Resource | Resource

community
cailiative

~N/
$
$
= ExaWworks
Scientific
Workflows
SDK
Pa

|18 tawrence Livermore - Argonne & (§) Brackhaven 0k Rivce @) ERERGY 2 https://exaworks.org EXxaWorks

https://exaworks.org/summit.html
https://exaworks.org/summit.html

Questions?

parsl-project.org

parsl-project.org/binder

2“0 U.S. DEPARTMENT OF

a7 R
./ JENERGY

