
LHCb Upgrade Restart
Software & Computing Round Table

5 April 2022

Rosen Matev



Why upgrade LHCb?
30 MHz (5 TB/s) of input 

contains a MHz of signal, 

while we can only store 10 

GB/s long-term

22



LHCb upgrade dataflow

33

LHCb-FIGURE-2020-016



DAQ architecture
30 MHz (5 TB/s) 

of event building 

and processing in 

a data center

44



LHCb software projects
● Computing: core software, offline productions, data management

● Real Time Analysis (RTA): high-level trigger (reconstruction, 

selections, persistence), alignment and calibration

● Data Processing & Analysis (DPA): slimming/trimming, tools for 

analysis

● Simulation: generators, transport, digitisation, …

● (Online: primarily hardware, networking, storage, but also a lot of 

software)

● Disclaimer: the following is heavily biased towards RTA

55



Corollary: we don’t only have “good code” when collisions begin

=> the better we understand the system the faster we can recover

=> tools, automation and clear processes are very important

66



Release philosophy
● In stable data taking (e.g. during Run 2)

○ cut a production branch each year (as late as possible)

○ only fixes and “localised” changes (e.g. new/tuned HLT2 exclusive selection)

● In a commissioning period (e.g. now):

○ maintain a single branch

○ most effort goes into the running system, lesser expectation of stable output

○ postpone working on and merging non-critical changes

● In any case, ready to release prod/main at any point

○ solid framework helps (e.g. “hard” to introduce thread-safety issues)

○ good test coverage (some unit tests, mostly integration tests)

○ code review that is appropriately thorough

77



What do we test
● All of these usually happen on every merge request (GitLab)

● “Nightly” build system

○ compilation and unit tests

○ integration tests on O(1-1000) events

○ functional tests of e.g. persistence

○ any change in performance (within 1e-4) needs to be “blessed”

● Performance and regression “LHCbPR” tests

○ can take longer or may need dedicated resources

○ e.g. throughput tests, reconstruction performance, rate/efficiency tests

○ flag significant changes in computing or physics performance

88



trigger
event
input

event 
output

Running Gaudi online



event
input

event 
output

s
o
f
t
w
a
r
e

c
o
n
f
i
g
u
r
a
t
i
o
n

o
p
t
i
o
n
s

c
o
n
d
i
t
i
o
n
s

s
t
e
e
r
i
n
g

l
o
g
g
i
n
g

m
o
n
i
t
o
r
i
n
g

n
o
n
-
e
v
e
n
t

p
r
o
d
u
c
t
s

s
t
e
e
r
i
n
g

trigger/
monitoring/
alignment/

...



e
v
e
n
t

i
n
p
u
t

e
v
e
n
t
 

o
u
t
p
u
t

software

configuration

options

conditions

steering

logging

monitoring

non-event
products

steering

t
r
i
g
g
e
r
/

m
o
n
i
t
o
r
i
n
g
/

a
l
i
g
n
m
e
n
t
/

.
.
.



How do we run this thing? 
● Release and deploy software on CVMFS

● Create and deploy “trigger configuration” DBs

● Install online, update the WinCC-based run control

● Check that it configures

● 🤞and wait for stable beams

● Look at some plots and logs

● Debug

● Rinse and repeat

1212



Non-event-data inputs
● Software: mostly CVMFS (local cache) + a bit of NFS

○ Run 2: ~50k processes on 1.5k nodes reading from NFS at the same time: slow

○ now: better NFS, fewer processes (multi-threading)

● Configuration DBs (trigger config, MVA weights, …): CVMFS

● Run control options, conditions: NFS

○ run control generates files, tasks read them

○ pros: very simple, easy to debug

○ cons: potential contention point, potential sync issues

● Steering: network socket

1313



Online integration (steering)

1414



Online integration (data)

1515



Non-event-data outputs (monitoring)
● Logging is a kind of monitoring

○ nominally used for debugging only; avoid having “expected” messages

● Several reasons why we need monitoring

○ quality control (is trigger config okay) + data quality (is data okay)

○ debugging issues (e.g. misconfiguration, performance)

○ real-time data for LHC, record of conditions (e.g. inputs for MC)

● Several ways to get stuff out

○ over the network (DIM) for histograms and counters

○ plain files (conditions)

1616



Trigger output
● Dedicated raw data format in the online system

○ trivial and concatenable (after HLT1)

● “Routing bits” are set by HLT1 / HLT2 per event

○ used to decide which event goes where (e.g. input of monitoring tasks or 

data for tracker alignment, etc.)

● HLT 2 needs to stream internally (different content per stream)

FULL

TURBO

1717



Online testbench

1818

running, for example, HLT 2 with the 

full blown ECS can be tedious

=> iterate faster with appropriate tools



HLT1 (GPU trigger) integration
● Process data in the “SOA” layout provided by the event builder

○ Batches of 30k grouped by readout unit (multiple frontends), not by event

○ Process in batches of 1k events

● Wrapped into Gaudi (sans the event loop)

○ Steering by the experiment control system

○ Obtain geometry and conditions from “regular” stack on the fly

○ Deal with changing conditions

○ Monitoring output goes via the common service

● HLT1 hardware and processes share the server with event building: 

keep a close eye on CPU and memory usage

1919



October`21 LHC test beam

20

● LHC performed excellently: they often go faster than expected!

● LHCb ran with the upgraded RICH, calorimeters and muon 

stations, and the new PLUME detector for the first time.

● Overall, an overwhelming success for the LHCb commissioning

○ online system commissioned and was demonstrated to work

○ participating detectors time aligned within a few days

○ the monitoring system / viz tool was integrated and used

○ HLT1 was progressively deployed on CPU/GPU in passthrough/activity mode

○ The full system was tested in «operation mode» with a shifter taking charge

20



2121



Some takeaways
● Communication is crucial (with detectors and among software projects)

● Sharing infrastructure is really important:

○ detector monitoring tasks piggybacked on HLT2 integration work

● With software, you can do most of what you need remotely, however, you 

need such live sessions, because

○ beam time is a strong motivator: one year before beam, there’s always something more 

important to do than figuring out the online integration

○ it brings people physically together (when there is no beam, organize “hackathons” or 

“commissioning weeks” to boost focus and get things done)

● Some example issues you’ll only see with real data

○ data padding not implemented according to spec, irrelevant in MC

○ the channel map in the conditions does not correspond to the real cabling

2222



More always needed!
● Testing

○ In Run 2 we only tested HLT 1 out-of-fill by running on random triggers.

○ HLT 2 could only be tested by running manually or risking data loss.

○ Deploying updates in Run 3 has to be fast!

○ Can we test in a reasonably large part of the system? In parallel to data taking?

● Easy to configure and run, profile and debug

○ The same configuration should run online and offline with a trivial switch

○ Send pathological events to a DEBUG stream

○ Automatic perf stats, save core dumps, ...



Thank you



RTA’s goals
RTA’s product is physics data of high quality obtained by means of

● software such as the trigger and alignment applications

● monitoring capability

● clear interpretation of data

As such we need to

● develop the trigger selections, reconstruction and calibration

● run the applications in the online / offline (MC) environment

● store data in a usable form and provide performance corrections

25



Online alignment FSM

2626

● Each online alignment and calibration task is 

controlled by the same finite state machine

● One process of the analyser task runs on each of the 

~1600 nodes in the trigger farm (in Run 2)

● Overview of sequence:

○ Iterator writes conditions in XML

○ Each analyser reads these conditions and 

reconstructs events to produce a binary file 

“alignsummarydata” (ASD)

○ Iterator combines the ASDs to compute the new 

conditions constants and writes these to XML

○ Steps 2 & 3 repeat until the procedure converges. 

The new constants are then copied to the trigger 

area.



Monitoring data flow


