Software & Computing Round Table, Feb 8, 22

Julia for NHEP

Philippe Gras

CEA/IRFU - Saclay

Feb 8, 22

1/31

Introduction

» Julia is a recent programming language (first release in 2013)
» Designed to provide high performance (like C/C++) and easy
programming (like Python) within the same language
» Rich ecosystem, especially for scientific domain
» The ideal language for NHEP applications, with a growing interest.
> Attractive as a replacement of C++ @ Python paradigm

2/31

Julia solving the two-language problem

Fast/easy coding Fast running
Python & C/C++

= Effect: mix of languages and going back-and-forth between them

» J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah tackled the
problem in 2009 aiming to design a programming language that
provides both Fast/easy coding AND Fast running

» Birth of Julia, release 0.1 in 2013

» This breakthrough was recognised by awards attributed to the
authors

» James H. Wilkinson Prize in Numerical Analysis and Scientific in
2019 ZIEEE Computer Society Sidney Fernbach Award in 2019
» |EEE Computer Society Sidney Fernbach Award in 2019
» In 12 years since its conceptualisation, Julia has been improved from
release to release and has aggregated many package developers

Nowadays, Julia is a mature language, with a wide ecosystem]

3/31

https://www.ll.mit.edu/news/wilkinson-prize-goes-developers-flexible-julia-programming-language
https://www.ll.mit.edu/news/wilkinson-prize-goes-developers-flexible-julia-programming-language
https://www.computer.org/press-room/2019-news/2019-ieee-fernbach-award-edelman

Examples of Julia uses

>

2

The climate modeling alliance Clima code is written in Julia:
https://clima.caltech.edu/

Celeste: a new parallel computing method to process the Sloan
Digital Sky Survey (SDSS) data set and produce the most accurate
catalogue of 188 million astronomical objects in just 14.6 min.:

Pharmaceutical (Pfizer and Moderna partly use Julia):
https://juliacomputing.com/case-studies/pfizer/
Energy network research at Los Alamos:
https://lanl-ansi.github.io/

Federal Reserve bank of New York:
https://libertystreeteconomics.newyorkfed.org/2015/12/
the-frbny-dsge-model-meets-julia/

Electronics simulation and quantum computing:
https://www.hpcwire.com/off-the-wire/
julia-computing-receives-darpa-award-to-accelerate\
-electronics-simulation-by-1000x/

4/31

https://clima.caltech.edu/
https://juliacomputing.com/case-studies/pfizer/
https://lanl-ansi.github.io/
https://libertystreeteconomics.newyorkfed.org/2015/12/the-frbny-dsge-model-meets-julia/
https://libertystreeteconomics.newyorkfed.org/2015/12/the-frbny-dsge-model-meets-julia/
https://www.hpcwire.com/off-the-wire/julia-computing-receives-darpa-award-to-accelerate\-electronics-simulation-by-1000x/
https://www.hpcwire.com/off-the-wire/julia-computing-receives-darpa-award-to-accelerate\-electronics-simulation-by-1000x/
https://www.hpcwire.com/off-the-wire/julia-computing-receives-darpa-award-to-accelerate\-electronics-simulation-by-1000x/

Julia in NHEP

> KM3Net high-level software has a Julia environment in development in addition
to the Python one (reported here (@)

» The LEGEND 0v3p3 experiment uses two parallel stacks, the primary in Python
and the secondary (for validation and experimentation) in Julia. C++ is used for
Geant-4 simulation software (reported here (')

> LHCb analysis that leads to the first observation of the 2~ — =K~ 7~ decay
(10.1103/PhysRevD.104.L091102 (") uses Julia: see Julia for data analysis in
High Energy Physics, Mikael Mikhasenko . M. Mikkhasenko has used Julia also
for a JPAC analysis (doi:10.1103/PhysRevD.98.096021 Z) and a COMPAS
analysis (doi:10.1103/PhysRevLett.127.082501 (%) as reported here(".

» Performance of Julia for High Energy Physics Analyses, Marcel Stanitzki and Jan
Strube &

» Julia HEP organization on github(™@

» Julia-in-HEP session of PyHEP 2021 workshop ', HSF Julia for HEP
Mini-worksop (&

Use of Julia for NHEP still limited, the interest is growing.]

5/31

https://indico.cern.ch/event/1019958/timetable/#9-python-based-tools-and-frame
https://indico.cern.ch/event/1074269/#4-case-study-julia-in-a-workgr
htpps://doi.org/10.1103/PhysRevD.104.L091102
https://live.juliacon.org/talk/TRMZFB
https://live.juliacon.org/talk/TRMZFB
https://doi.org/10.1103/PhysRevD.98.096021
https://doi.org/10.1103/PhysRevLett.127.082501
https://indico.cern.ch/event/1074269/#5-julia-and-the-first-observat
https://link.springer.com/article/10.1007/s41781-021-00053-3
https://link.springer.com/article/10.1007/s41781-021-00053-3
https://github.com/JuliaHEP
https://indico.cern.ch/event/1019958/timetable/#b-424630-plenary-julia-in-hep
https://indico.cern.ch/event/1074269/
https://indico.cern.ch/event/1074269/

An incursions into Loops

Photo by Roberto Bormann (' from Freelmages ('

6/31

https://freeimages.com/photographer/rsbormann-42960
https://freeimages.com

HEP data analysis is a looping game

HEP enjoys loop: we loop on physics events to loop on particles/physics
objects. We often perform particle matching and clustering and for this
we loop on events to loop on objects to loop on objects.

for event in billions_of_lhc_events
for tens_or_hundreds_of_objects in event
for tens_or_hundres_of_objects_to_match in event

end

end
end

» This is repeated several times for each analysis.

= For an LHC analysis, lines of code executed billions of times even for a
Kleenex code, written specially for a publication.

7/31

A simple loop in C/C++

#include <iostream>
#include <sys/time.h>x

int main(){ - : .
struct timeval t@, ti1; run(g++_-Wall -0 simple-loop simple-loop.cc’)
gettimeofday(&t0, 0); fun(./simple-loop”)

run(g++ -03 -Wall -o simple-loop simple-loop.cc’)

double a = 0.; run(’./simple-loop")
for(unsigned i = 1; i <= 1000000; ++i) a += 1.0/1; ;
std::cout << "Computation Result: " << a << "\n"; Computation Result: 14.3927

Computation Result: 14.3927

gettimeofday(&tl, 0); R 0. CoEER d
std::cerr << "Duration: " << (tl.tv_sec-t0.tv_sec) uration:Ro; seconcs
= - Duration: 0.001021 seconds
+ 1l.e-6%(tl.tv_usec-t0.tv_usec)
<< " seconds\n";
return 0;

C/C++
1.0ms

8/31

A simple loop in Python

def f():
a=0,
for i in range(1l, 1 000 000 +1):
a=a+1.0/i

return a C/C-l--l— Python
%%time 1.0ms 44ms
print(f())

14.392726722864989
CPU times: user 44.2 ms, sys: 0 ns, total: 44.2 ms
Wall time: 43.6 ms

» Coding is simpler
» No need to compile

» The code runs 44 times slower than C/C++.

Python dislikes loops

» A master rule for high-performance code in Python is to avoid writing
loop in Python

= push the loop to underlying compiled libraries. Approach of the numpy
vectorization.

9/31

A simple loop in Julia

L #

Julia

#

function f()
a=20.0
for i in 1:1 000 000 # Note the underscores that improves legibility

a=a+ 1.0/i

end
return a

end

0

@time b = f()

0.001004 seconds (1 allocation: 16 bytes)
14.392726722864989

C/C++ Python Julia
1.0ms 44ms 1.0ms

> As simple as Python, as fast as C/C++

10/31

What makes Julia unique

Developed from Day-1 with the goal of conciliating high performance
computing with easy coding

Just-in-time compilation

» Provides both fast execution and a good interactive experience

Its type system
Its multiple dispatch paradigm
Support for Jupyter notebook

» (Ju stands for Julia).

11/31

The Julia type system

» Dynamic
» The JIT compiler infers the variable types when possible to produce
optimised code
» Possibility to explicitly indicate a type
» To provide polymorphism (annotation of argument types)

> For efficiency, but type can most often be inferred by the compiler
> For explicit type checking.

> Parametric types, like C++ template

struct P4{T}
px::T

py::T

pz::T

(331

end

» Inheritance from abstract types. The abtract types allow writing
generic functions, later called with concrete types.

» Julia provides polymorphism in both generic programming and

function overriding meanings in a more consistent manner than C++
12/31

The multiple dispatch paradigm

Dispatch = dynamic polymorphism

» The executed code when calling a function depends on the type of

its argument. Selection done at runtime.

Single dispatch: dynamic polymorphism for a single
parameter

» The case of C++ with the virtual class member functions
Multiple dispatch: dynamic polymorphism for every
parameter of a function

> A central feature of Julia
The Multiple dispatch eases remarkably use/extension of
third-party libraries

» It explains the rapid grow of the Julia ecosystem.

» See why in S. Karpinski's The Unreasonable Effectiveness of
Multiple Dispatch @ talk.

13/31

https://www.youtube.com/watch?v=kc9HwsxE1OY
https://www.youtube.com/watch?v=kc9HwsxE1OY

Programming with Julia is easy

» Code syntax and grammar is similar to Pythons. No
std::map<std:string, std::vector<MyClass»..., no compilation step.

» Dynamic type system

v

Easy to learn

» Syntactic sugars similar to Python for a concise code: list
comprehension, a < b < ¢, 1_000_000, support of symbols for
variables...
and more: e.g. a function call is "vectorized" (ala numpy) with a

simple dot, f.(x)

» Interactive help, nice tools to debug, to optimise code, for

introspection.

14 /31

Programming in a community

> Internet search engine and stack overflow play is an essential
ingredient in nowadays programming workflow.

» Julia is already widespread enough, to find all the information on the
Internet.

» In addition to usual resource, Julia has dedicated fora on
Discourse @, Slack@, and Zulip@ with an active and friendly
community.

Go to https://www.duckduckgo.com or your preferred search engine
and make a try.

15/31

https://discourse.julialang.org/
https://julialang.org/slack/
https://julialang.zulipchat.com/
https://www.duckduckgo.com

A rich ecosystem

» Large set of libraries and active development
» Julia is firstly used by scientific community = oriented to our needs
» Machine Learning, GPU, Plotting, DataFrames, etc...

» | did the following exercise during the PyHEP2021 workshop @: I've
looked for a Julia equivalent each time a speaker mention a Python
library (apart from HEP specific ones).

» Found a Julia equivalent of 16 out of the 18 mentioned libraries:
missing one was a binding to FreeCAD (which is in discussion) and
the software testing library with a specify technique (Hypothesis).

16 /31

https://indico.cern.ch/event/1019958/

Data format support

Non-HEP format

» HDF5 and Parquet are fully supported (also CSV and Excel, less
relevant for NHEP)

ROOT

» Two packages, developed by users.

» Writtten in Julia, fast, and read-only: UnROOT jI& from Tamas Gal
and Jerry Ling. Can read KM3Net data and tree of simple type
and/or vector of simple type like CMS NanoAOD.

» Providing both read and write support: UpROOT jI& from Oliver
Schulz. A wrapper to uproot®. Support xroot.

17/31

https://github.com/tamasgal/UnROOT.jl
https://github.com/JuliaPy/PyCall.jl
https://github.com/scikit-hep/uproot3

Tools

IDE

» Emacs and vim support

» Atom and VScode support. Many features. Code can be run and
debugged with the IDE, with support for plots.

Notebooks
> Jupyter
» Pluto@. A new generation notebook with automatic update of cells.

Debugger
» Debugger, Rebugger, Juno debugger (for Atom IDE)

Code optimisation

> Integrates nice and easy-to-use tools to optimize code performance.

18/31

https://github.com/fonsp/Pluto.jl

Package installation

Package installation
Python made it easy with Conda and pip. It's even easier in Julia
» A standard library part of the Julia installation

» Give instructions to the user, when he or she tries to import a
missing package.

Documentation: https://docs.julialang.org
Type "?" for help, "]?" for Pkg help.

Version 1.7.0-rcl (2021-09-12)

julia> import Blink
Package Blink not found, but a package named Blink is available from a registry.
Install package?
add Blink
(y/n) tyl: I

19/31

Language Interporability

In NHEP, we have a large legacy of software
= Reuse of libraries written in different languages is essential

"UK to US plug adaptor and UK to European plug adaptor" by Karen V Bryan is licensed under CC BY-ND 2.0

20/31

Language Interoperability provided by Julia

Use of library written in a different language

» Python, C, Fortran code: direct call from Julia and Jupyter Julia

kernels

» C++ code: call via a wrapper. Lacking a tool for automatic
generation of wrapper like swig. Project for direct-call (ala cppyy)
on hold and not working for recent versions of Julia.

The other way around

» Python code can call Julia as well
» C/C++ code can call Julia code

21/31

Calling Python from Julia

Enable Python call:
using PyCall

Inport a python module:
math = pyimport("math")

Use it as a Julia module:
math.sin(math.pi / 4)

0.7071067811865475

22/31

Calling Julia from Python

$ python3 -m pip install julia # install PyJulia

you may need '--user’ after ‘install’
$ python3
>>> import julia
>>> julia.install() # install PyCall.jl etc.
>>> from julia import Base # short demo
>>> Base.sind(90)
1.0

23/31

Mixing Julia and Python code in a notebook

Julia code cells can be included in a Jupyter notebook running a Python
kernel:

Load the Julia magic extension
%load ext julia.magic
The julia.magic extension is already loaded. To reload it, use:

%reload ext julia.magic

Excute some code written in "Julia"

rintln("x = $(x) = x2 = $(y)")

Variables defined in Julia can be accessed from Python

X = %julia x
2 y = %julia y
3 prink(f'x = {x} =2 = {y}')

X =10 = X2 = 100

24 /31

Calling C or Fortran from Julia

path = ccall(:getenv, Cstring, (Cstring,), "SHELL")
unsafe string(path)

"/bin/bash"
You will typically write a wrapper in Julia to handle errors, like this:

;. function getenv(var::AbstractString)
val = ccall(:getenv, Cstring, (Cstring,), var)
if val == C_NULL
error("getenv: undefined variable:
end
return unsafe_string(val)
end

, var)

getenv (generic function with 1 method)
¢ println(getenv("USER"))

println(getenv("SMOKE")) # = will through an exception unless you have SMOKE in your environment
pgras

getenv: undefined variable: SMOKE

Stacktrace:

[1] error(::String, ::String)
@ Base ./error.jl:42

25 /31

Julia from C/C4++

#include <julia.h>
JULIA DEFINE FAST TLS

int main(int argc, char *argv[])

{
/* required: setup the Julia context */
j1 init();
/* run Julia commands */
j1 eval string("print(sqrt(2.0))");
/* notify Julia that the program is about
to terminate. */
j1 atexit hook(0);
return 0;
}

A proof-of-concept of integrating Julia in a C++ HEP Framework:
https://github.com/grasph/JulialnACxxHepFramework

26 /31

https://github.com/grasph/JuliaInACxxHepFramework

A simple HEP example

» Dimuon spectrum using data from the CMS detector.

» Analysis and data available from the CERN opendata portal: here™@
» Uses the UnROOT @& package to read the open CMS data from its

ROOT format.

» Data format:

Column name

Data type

Description

nMuon
Muon_pt
Muon_eta
Muon_phi
Muon_mass

Muon_charge

unsigned int
float[nMuon]
float[nMuon]
float[nMuon]
float[nMuon]

int[nMuon]

Number of muons in this event

Transverse momentum of the muons (stored as an array of size nMuon)
Pseudorapidity of the muons

Azimuth of the muons

Mass of the muons

Charge of the muons (either 1 or -1)

27/31

http://opendata.cern.ch/record/22350
https://github.com/tamasgal/UnROOT.jl

simple HEP example

The analysis code

function analyze tree(t, maxevents = -1)

bins = 30 000 # Number of bins in the histogram

low = 0.25 # Lower edge of the histogram

up = 300.0 # Upper edge of the histogram

h = H1{Float64}(Axis(bins, low, up))

for (ievt, evt) in enumerate(t)
maxevents >= 0 & ievt > maxevents && break
evt.nMuon ==2 || continue
evt.Muon_charge[1] != evt.Muon_charge[2] || continue
dimuon_mass = m(ptetaphim(evt.Muon_pt[1], evt.Muon_eta[1l], evt.Muon_phi[1], evt.Muon_mass[1])

+ ptetaphim(evt.Muon_pt[2], evt.Muon_eta[2], evt.Muon_phi[2], evt.Muon_mass[2]))

hfill!(h, dimuon_mass)

Running the analysis

t = LazyTree(ROOTFile(fname),"Events")
@time h = analyze_tree(t);

32.669432 seconds (165.32 M allocations: 22.806 GiB, 12.62% gc time, 2.41% compilation time)

» 33secs to run over 61.5M events

28 /31

A simple HEP example

» The results plotted using tools from the Julia ecosystem

10°

Iy
100

Y(1,2,35) yncorrected 7

trigger
artefact

10

10

Event count

10

10° 10t 10°
Dimuon mass [GeV/c?]

29/31

A simple HEP example: code speed

» Time to execute the code was compared to implementations
performed in Python

Python RDataFrame Python RDataFrame

Julia Pythoneventloop ™1 compiled C++ JIT-compiled python (Numba)

35s 4h 5min 60 s 125s
Similar performance expected for a DataFrame-based Julia implementation
= Julia runs fast out of the box

No need to think of performance when writing the code

30/31

Conclusions

» Julia is not just another language. It meets a need,

Reconciling fast running with easy and fast coding

» It comes with a large Ecosystem.
» Mature enough to be used for NHEP.

Julia is a very promising language for NHEP.

31/31

