
Software & Computing Round Table, Feb 8, 22

Julia for NHEP

Philippe Gras

CEA/IRFU - Saclay

Feb 8, 22

1 / 31



Introduction

I Julia is a recent programming language (�rst release in 2013)
I Designed to provide high performance (like C/C++) and easy

programming (like Python) within the same language
I Rich ecosystem, especially for scienti�c domain

I The ideal language for NHEP applications, with a growing interest.
I Attractive as a replacement of C++ ⊕ Python paradigm

2 / 31



Julia solving the two-language problem

Fast/easy coding Fast running
Python ⇔ C/C++

⇒ E�ect: mix of languages and going back-and-forth between them

I J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah tackled the
problem in 2009 aiming to design a programming language that
provides both Fast/easy coding AND Fast running
I Birth of Julia, release 0.1 in 2013
I This breakthrough was recognised by awards attributed to the

authors
I James H. Wilkinson Prize in Numerical Analysis and Scienti�c in

2019WIEEE Computer Society Sidney Fernbach Award in 2019
I IEEE Computer Society Sidney Fernbach Award in 2019W

I In 12 years since its conceptualisation, Julia has been improved from
release to release and has aggregated many package developers

Nowadays, Julia is a mature language, with a wide ecosystem

3 / 31

https://www.ll.mit.edu/news/wilkinson-prize-goes-developers-flexible-julia-programming-language
https://www.ll.mit.edu/news/wilkinson-prize-goes-developers-flexible-julia-programming-language
https://www.computer.org/press-room/2019-news/2019-ieee-fernbach-award-edelman


Examples of Julia uses

I The climate modeling alliance Clima code is written in Julia:
https://clima.caltech.edu/

I Celeste: a new parallel computing method to process the Sloan
Digital Sky Survey (SDSS) data set and produce the most accurate
catalogue of 188 million astronomical objects in just 14.6 min.:

I Pharmaceutical (P�zer and Moderna partly use Julia):
https://juliacomputing.com/case-studies/pfizer/

I Energy network research at Los Alamos:
https://lanl-ansi.github.io/

I Federal Reserve bank of New York:
https://libertystreeteconomics.newyorkfed.org/2015/12/

the-frbny-dsge-model-meets-julia/

I Electronics simulation and quantum computing:
https://www.hpcwire.com/off-the-wire/

julia-computing-receives-darpa-award-to-accelerate\

-electronics-simulation-by-1000x/

4 / 31

https://clima.caltech.edu/
https://juliacomputing.com/case-studies/pfizer/
https://lanl-ansi.github.io/
https://libertystreeteconomics.newyorkfed.org/2015/12/the-frbny-dsge-model-meets-julia/
https://libertystreeteconomics.newyorkfed.org/2015/12/the-frbny-dsge-model-meets-julia/
https://www.hpcwire.com/off-the-wire/julia-computing-receives-darpa-award-to-accelerate\-electronics-simulation-by-1000x/
https://www.hpcwire.com/off-the-wire/julia-computing-receives-darpa-award-to-accelerate\-electronics-simulation-by-1000x/
https://www.hpcwire.com/off-the-wire/julia-computing-receives-darpa-award-to-accelerate\-electronics-simulation-by-1000x/


Julia in NHEP

I KM3Net high-level software has a Julia environment in development in addition
to the Python one (reported hereW)

I The LEGEND 0νββ experiment uses two parallel stacks, the primary in Python
and the secondary (for validation and experimentation) in Julia. C++ is used for
Geant-4 simulation software (reported hereW)

I LHCb analysis that leads to the �rst observation of the Ω−
b → Ξ+

c K
−π− decay

(10.1103/PhysRevD.104.L091102W) uses Julia: see Julia for data analysis in
High Energy Physics, Mikael MikhasenkoW. M. Mikkhasenko has used Julia also
for a JPAC analysis (doi:10.1103/PhysRevD.98.096021W) and a COMPAS
analysis (doi:10.1103/PhysRevLett.127.082501W) as reported hereW.

I Performance of Julia for High Energy Physics Analyses, Marcel Stanitzki and Jan
StrubeW

I Julia HEP organization on githubW

I Julia-in-HEP session of PyHEP 2021 workshopW, HSF Julia for HEP
Mini-worksopW

Use of Julia for NHEP still limited, the interest is growing.

5 / 31

https://indico.cern.ch/event/1019958/timetable/#9-python-based-tools-and-frame
https://indico.cern.ch/event/1074269/#4-case-study-julia-in-a-workgr
htpps://doi.org/10.1103/PhysRevD.104.L091102
https://live.juliacon.org/talk/TRMZFB
https://live.juliacon.org/talk/TRMZFB
https://doi.org/10.1103/PhysRevD.98.096021
https://doi.org/10.1103/PhysRevLett.127.082501
https://indico.cern.ch/event/1074269/#5-julia-and-the-first-observat
https://link.springer.com/article/10.1007/s41781-021-00053-3
https://link.springer.com/article/10.1007/s41781-021-00053-3
https://github.com/JuliaHEP
https://indico.cern.ch/event/1019958/timetable/#b-424630-plenary-julia-in-hep
https://indico.cern.ch/event/1074269/
https://indico.cern.ch/event/1074269/


An incursions into Loops

Photo by Roberto BormannW from FreeImagesW

6 / 31

https://freeimages.com/photographer/rsbormann-42960
https://freeimages.com


HEP data analysis is a looping game

HEP enjoys loop: we loop on physics events to loop on particles/physics
objects. We often perform particle matching and clustering and for this
we loop on events to loop on objects to loop on objects.

for event in billions_of_lhc_events

for tens_or_hundreds_of_objects in event

for tens_or_hundres_of_objects_to_match in event

...

end

end

end

I This is repeated several times for each analysis.

⇒ For an LHC analysis, lines of code executed billions of times even for a
Kleenex code, written specially for a publication.

7 / 31



A simple loop in C/C++

C/C++
1.0ms

8 / 31



A simple loop in Python

C/C++ Python
1.0ms 44ms

I Coding is simpler

I No need to compile

I The code runs 44 times slower than C/C++.

Python dislikes loops
I A master rule for high-performance code in Python is to avoid writing

loop in Python

⇒ push the loop to underlying compiled libraries. Approach of the numpy
vectorization.

9 / 31



A simple loop in Julia

C/C++ Python Julia
1.0ms 44ms 1.0ms

I As simple as Python, as fast as C/C++

10 / 31



What makes Julia unique

Developed from Day-1 with the goal of conciliating high performance

computing with easy coding

Just-in-time compilation

I Provides both fast execution and a good interactive experience

Its type system

Its multiple dispatch paradigm

Support for Jupyter notebook

I (Ju stands for Julia).

11 / 31



The Julia type system

I Dynamic

I The JIT compiler infers the variable types when possible to produce
optimised code

I Possibility to explicitly indicate a type
I To provide polymorphism (annotation of argument types)
I For e�ciency, but type can most often be inferred by the compiler
I For explicit type checking.

I Parametric types, like C++ template

I Inheritance from abstract types. The abtract types allow writing
generic functions, later called with concrete types.

I Julia provides polymorphism in both generic programming and
function overriding meanings in a more consistent manner than C++

12 / 31



The multiple dispatch paradigm

Dispatch = dynamic polymorphism

I The executed code when calling a function depends on the type of
its argument. Selection done at runtime.

Single dispatch: dynamic polymorphism for a single
parameter

I The case of C++ with the virtual class member functions

Multiple dispatch: dynamic polymorphism for every
parameter of a function

I A central feature of Julia

The Multiple dispatch eases remarkably use/extension of
third-party libraries

I It explains the rapid grow of the Julia ecosystem.

I See why in S. Karpinski's The Unreasonable E�ectiveness of
Multiple DispatchW talk.

13 / 31

https://www.youtube.com/watch?v=kc9HwsxE1OY
https://www.youtube.com/watch?v=kc9HwsxE1OY


Programming with Julia is easy

I Code syntax and grammar is similar to Pythons. No
std::map<std:string, std::vector<MyClass�..., no compilation step.

I Dynamic type system

I Easy to learn

I Syntactic sugars similar to Python for a concise code: list
comprehension, a < b < c, 1_000_000, support of symbols for
variables...

and more: e.g. a function call is "vectorized" (ala numpy) with a
simple dot, f.(x)

I Interactive help, nice tools to debug, to optimise code, for
introspection.

14 / 31



Programming in a community

I Internet search engine and stack over�ow play is an essential
ingredient in nowadays programming work�ow.

I Julia is already widespread enough, to �nd all the information on the
Internet.

I In addition to usual resource, Julia has dedicated fora on
DiscourseW, SlackW, and ZulipW with an active and friendly
community.

Go to https://www.duckduckgo.com or your preferred search engine
and make a try.

15 / 31

https://discourse.julialang.org/
https://julialang.org/slack/
https://julialang.zulipchat.com/
https://www.duckduckgo.com


A rich ecosystem

I Large set of libraries and active development
I Julia is �rstly used by scienti�c community ⇒ oriented to our needs

I Machine Learning, GPU, Plotting, DataFrames, etc...

I I did the following exercise during the PyHEP2021 workshopW: I've
looked for a Julia equivalent each time a speaker mention a Python
library (apart from HEP speci�c ones).
I Found a Julia equivalent of 16 out of the 18 mentioned libraries:

missing one was a binding to FreeCAD (which is in discussion) and
the software testing library with a specify technique (Hypothesis).

16 / 31

https://indico.cern.ch/event/1019958/


Data format support

Non-HEP format
I HDF5 and Parquet are fully supported (also CSV and Excel, less

relevant for NHEP)

ROOT
I Two packages, developed by users.

I Writtten in Julia, fast, and read-only: UnROOT.jlW from Tamas Gal
and Jerry Ling. Can read KM3Net data and tree of simple type
and/or vector of simple type like CMS NanoAOD.

I Providing both read and write support: UpROOT.jlW from Oliver
Schulz. A wrapper to uprootW. Support xroot.

17 / 31

https://github.com/tamasgal/UnROOT.jl
https://github.com/JuliaPy/PyCall.jl
https://github.com/scikit-hep/uproot3


Tools

IDE
I Emacs and vim support

I Atom and VScode support. Many features. Code can be run and
debugged with the IDE, with support for plots.

Notebooks
I Jupyter

I PlutoW. A new generation notebook with automatic update of cells.

Debugger

I Debugger, Rebugger, Juno debugger (for Atom IDE)

Code optimisation

I Integrates nice and easy-to-use tools to optimize code performance.

18 / 31

https://github.com/fonsp/Pluto.jl


Package installation

Package installation
Python made it easy with Conda and pip. It's even easier in Julia

I A standard library part of the Julia installation

I Give instructions to the user, when he or she tries to import a
missing package.

19 / 31



Language Interporability

In NHEP, we have a large legacy of software
⇒ Reuse of libraries written in di�erent languages is essential

"UK to US plug adaptor and UK to European plug adaptor" by Karen V Bryan is licensed under CC BY-ND 2.0

20 / 31



Language Interoperability provided by Julia

Use of library written in a di�erent language

I Python, C, Fortran code: direct call from Julia and Jupyter Julia
kernels

I C++ code: call via a wrapper. Lacking a tool for automatic
generation of wrapper like swig. Project for direct-call (ala cppyy)
on hold and not working for recent versions of Julia.

The other way around

I Python code can call Julia as well

I C/C++ code can call Julia code

21 / 31



Calling Python from Julia

22 / 31



Calling Julia from Python

23 / 31



Mixing Julia and Python code in a notebook
Julia code cells can be included in a Jupyter notebook running a Python
kernel:

24 / 31



Calling C or Fortran from Julia

You will typically write a wrapper in Julia to handle errors, like this:

25 / 31



Julia from C/C++

A proof-of-concept of integrating Julia in a C++ HEP Framework:
https://github.com/grasph/JuliaInACxxHepFramework

26 / 31

https://github.com/grasph/JuliaInACxxHepFramework


A simple HEP example

I Dimuon spectrum using data from the CMS detector.

I Analysis and data available from the CERN opendata portal: hereW

I Uses the UnROOTW package to read the open CMS data from its
ROOT format.

I Data format:

27 / 31

http://opendata.cern.ch/record/22350
https://github.com/tamasgal/UnROOT.jl


A simple HEP example

The analysis code

Running the analysis

I 33 secs to run over 61.5M events

28 / 31



A simple HEP example

I The results plotted using tools from the Julia ecosystem

29 / 31



A simple HEP example: code speed

I Time to execute the code was compared to implementations
performed in Python

Similar performance expected for a DataFrame-based Julia implementation

⇒ Julia runs fast out of the box

No need to think of performance when writing the code

30 / 31



Conclusions

I Julia is not just another language. It meets a need,

Reconciling fast running with easy and fast coding

I It comes with a large Ecosystem.

I Mature enough to be used for NHEP.

Julia is a very promising language for NHEP.

31 / 31


