Introduction

- Julia is a recent programming language (first release in 2013)
 - Designed to provide high performance (like C/C++) and easy programming (like Python) within the same language
 - Rich ecosystem, especially for scientific domain
- The ideal language for NHEP applications, with a growing interest.
 - Attractive as a replacement of C++ ⊕ Python paradigm
Julia solving the two-language problem

<table>
<thead>
<tr>
<th>Fast/easy coding</th>
<th>Fast running</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python</td>
<td>☞ C/C++</td>
</tr>
</tbody>
</table>

⇒ Effect: mix of languages and going back-and-forth between them

- J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah tackled the problem in 2009 aiming to design a programming language that provides both Fast/easy coding AND Fast running
 - Birth of Julia, release 0.1 in 2013
 - This breakthrough was recognised by awards attributed to the authors
 - James H. Wilkinson Prize in Numerical Analysis and Scientific in 2019
 - IEEE Computer Society Sidney Fernbach Award in 2019
- In 12 years since its conceptualisation, Julia has been improved from release to release and has aggregated many package developers

Nowadays, Julia is a mature language, with a wide ecosystem
Examples of Julia uses

▶ The climate modeling alliance Clima code is written in Julia: https://clima.caltech.edu/
▶ Celeste: a new parallel computing method to process the Sloan Digital Sky Survey (SDSS) data set and produce the most accurate catalogue of 188 million astronomical objects in just 14.6 min.:
▶ Pharmaceutical (Pfizer and Moderna partly use Julia): https://juliacomputing.com/case-studies/pfizer/
▶ Energy network research at Los Alamos: https://lanl-ansi.github.io/
▶ Federal Reserve bank of New York: https://libertystreeteconomics.newyorkfed.org/2015/12/the-frbny-dsge-model-meets-julia/
KM3Net high-level software has a Julia environment in development in addition to the Python one (reported here).

The LEGEND $0\nu\beta\beta$ experiment uses two parallel stacks, the primary in Python and the secondary (for validation and experimentation) in Julia. C++ is used for Geant-4 simulation software (reported here).

LHCb analysis that leads to the first observation of the $\Omega^- \rightarrow \Xi^+_c K^- \pi^-$ decay (10.1103/PhysRevD.104.L091102) uses Julia: see Julia for data analysis in High Energy Physics, Mikael Mikhasenko. M. Mikhasenko has used Julia also for a JPAC analysis (doi:10.1103/PhysRevD.98.096021) and a COMPAS analysis (doi:10.1103/PhysRevLett.127.082501) as reported here.

Performance of Julia for High Energy Physics Analyses, Marcel Stanitzki and Jan Strube.

Julia HEP organization on github.

Use of Julia for NHEP still limited, the interest is growing.
An incursions into Loops

Photo by Roberto Bormann from Freimages
HEP data analysis is a looping game

HEP enjoys loop: we loop on physics events to loop on particles/physics objects. We often perform particle matching and clustering and for this we loop on events to loop on objects to loop on objects.

```python
for event in billions_of_lhc_events
    for tens_or_hundreds_of_objects in event
        for tens_or_hundres_of_objects_to_match in event
            ...
        end
    end
end
```

- This is repeated several times for each analysis.

⇒ For an LHC analysis, lines of code executed billions of times even for a Kleenex code, written specially for a publication.
A simple loop in C/C++

```cpp
#include <iostream>
#include <sys/time.h>

int main(){
    struct timeval t0, t1;
    gettimeofday(&t0, 0);

    double a = 0.0;
    for(unsigned i = 1; i <= 1000000; ++i) a += 1.0/i;
    std::cout << "Computation Result: " << a << "\n";

    gettimeofday(&t1, 0);
    std::cerr << "Duration: " << (t1.tv_sec-t0.tv_sec) + 1.0e-6*(t1.tv_usec-t0.tv_usec) << " seconds\n";
    return 0;
}
```

```
run('g++ -Wall -o simple-loop simple-loop.cc')
run('./simple-loop')
; run('g++ -O3 -Wall -o simple-loop simple-loop.cc')
run('./simple-loop')

Computation Result: 14.3927
Computation Result: 14.3927
Duration: 0.002332 seconds
Duration: 0.001021 seconds
```
A simple loop in Python

```python
def f():
    a = 0.
    for i in range(1, 1_000_000 +1):
        a = a + 1.0/i
    return a
```

<table>
<thead>
<tr>
<th>C/C++</th>
<th>Python</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0ms</td>
<td>44ms</td>
</tr>
</tbody>
</table>

14.392726722864989
CPU times: user 44.2 ms, sys: 0 ns, total: 44.2 ms
Wall time: 43.6 ms

- Coding is simpler
- No need to compile
- The code runs **44 times slower than C/C++**.

Python dislikes loops

- A master rule for high-performance code in Python is to avoid writing loop in Python
 ⇒ push the loop to underlying compiled libraries. Approach of the numpy vectorization.
A simple loop in Julia

```julia
# Julia
#
function f()
    a = 0.0
    for i in 1:1_000_000 # Note the underscores that improves legibility
        a = a + 1.0/i
    end
    return a
end
f()
@time b = f()
```

0.001004 seconds (1 allocation: 16 bytes)

14.392726722864989

<table>
<thead>
<tr>
<th>C/C++</th>
<th>Python</th>
<th>Julia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0ms</td>
<td>44ms</td>
<td>1.0ms</td>
</tr>
</tbody>
</table>

▶ As simple as Python, as fast as C/C++
What makes Julia unique

Developed from Day-1 with the goal of conciliating high performance computing with easy coding

Just-in-time compilation
- Provides both fast execution and a good interactive experience

Its type system

Its multiple dispatch paradigm

Support for Jupyter notebook
- *(Ju stands for Julia)*
The Julia type system

- Dynamic
- The JIT compiler infers the variable types when possible to produce optimised code
- Possibility to explicitly indicate a type
 - To provide polymorphism (annotation of argument types)
 - For efficiency, but type can most often be inferred by the compiler
 - For explicit type checking.
- Parametric types, like C++ template

```plaintext
struct P4{T}
  px::T
  py::T
  pz::T
  E::T
end
```

- Inheritance from abstract types. The abstract types allow writing generic functions, later called with concrete types.
- Julia provides polymorphism in both generic programming and function overriding meanings in a more consistent manner than C++
The multiple dispatch paradigm

Dispatch = dynamic polymorphism

▶ The executed code when calling a function depends on the type of its argument. Selection done at runtime.

Single dispatch: dynamic polymorphism for a single parameter

▶ The case of C++ with the virtual class member functions

Multiple dispatch: dynamic polymorphism for every parameter of a function

▶ A central feature of Julia

The Multiple dispatch eases remarkably use/extension of third-party libraries

▶ It explains the rapid grow of the Julia ecosystem.
▶ See why in S. Karpinski’s The Unreasonable Effectiveness of Multiple Dispatch talk.
Programming with Julia is easy

- Code syntax and grammar is similar to Python. No `std::map<std::string, std::vector<MyClass>>...`, no compilation step.
- Dynamic type system
- Easy to learn
- Syntactic sugars similar to Python for a concise code: list comprehension, `a < b < c`, `1_000_000`, support of symbols for variables...

 and more: e.g. a function call is "vectorized" (ala numpy) with a simple dot, `f.(x)`
- Interactive help, nice tools to debug, to optimise code, for introspection.
Programming in a community

- Internet search engine and stack overflow play is an essential ingredient in nowadays programming workflow.
- Julia is already widespread enough, to find all the information on the Internet.
- In addition to usual resource, Julia has dedicated fora on Discourse, Slack, and Zulip with an active and friendly community.

Go to https://www.duckduckgo.com or your preferred search engine and make a try.
A rich ecosystem

- Large set of libraries and active development
 - Julia is firstly used by scientific community ⇒ oriented to our needs
- Machine Learning, GPU, Plotting, DataFrames, etc...
- I did the following exercise during the PyHEP2021 workshop: I’ve looked for a Julia equivalent each time a speaker mention a Python library (apart from HEP specific ones).
 - Found a Julia equivalent of 16 out of the 18 mentioned libraries: missing one was a binding to FreeCAD (which is in discussion) and the software testing library with a specify technique (Hypothesis).
Data format support

Non-HEP format
- HDF5 and Parquet are fully supported (also CSV and Excel, less relevant for NHEP)

ROOT
- Two packages, developed by users.
 - Written in Julia, fast, and read-only: UnROOT.jl from Tamas Gal and Jerry Ling. Can read KM3Net data and tree of simple type and/or vector of simple type like CMS NanoAOD.
 - Providing both read and write support: UpROOT.jl from Oliver Schulz. A wrapper to uproot. Support xroot.
Tools

IDE
- Emacs and vim support
- Atom and VScode support. Many features. Code can be run and debugged with the IDE, with support for plots.

Notebooks
- Jupyter
- Pluto. A new generation notebook with automatic update of cells.

Debugger
- Debugger, Rebugger, Juno debugger (for Atom IDE)

Code optimisation
- Integrates nice and easy-to-use tools to optimize code performance.
Package installation

Python made it easy with Conda and pip. It’s even easier in Julia

- A standard library part of the Julia installation
- Give instructions to the user, when he or she tries to import a missing package.

```
 julia> import Blink
    Package Blink not found, but a package named Blink is available from a registry.
    Install package?
    (yes/no) pkg> add Blink
    (y/n) [y]: 
```
Language Interoperability

In NHEP, we have a large legacy of software
⇒ Reuse of libraries written in different languages is essential
Use of library written in a different language

- Python, C, Fortran code: direct call from Julia and Jupyter Julia kernels
- C++ code: call via a wrapper. Lacking a tool for automatic generation of wrapper like swig. Project for direct-call (ala cppyy) on hold and not working for recent versions of Julia.

The other way around

- Python code can call Julia as well
- C/C++ code can call Julia code
Enable Python call:
using PyCall

Import a python module:
math = pyimport("math")

Use it as a Julia module:
math.sin(math.pi / 4)

0.7071067811865475
Calling Julia from Python

$ python3 -m pip install julia
...

$ python3
>>> import julia
>>> julia.install()
>>> from julia import Base
>>> Base.sind(90)
1.0
Mixing Julia and Python code in a notebook

Julia code cells can be included in a Jupyter notebook running a Python kernel:

Load the Julia magic extension

```
%load_ext julia.magic
```

The `julia.magic` extension is already loaded. To reload it, use:
```
%reload_ext julia.magic
```

Execute some code written in "Julia"

```
%%julia
x = 10
y = x^2
println("x = $(x) \rightarrow x^2 = $(y)")
```

\(x = 10 \rightarrow x^2 = 100\)

Variables defined in Julia can be accessed from Python

```
x = %julia x
y = %julia y
print(f'x = \{x\} \rightarrow x^2 = \{y\}')
```

\(x = 10 \rightarrow x^2 = 100\)
Calling C or Fortran from Julia

You will typically write a wrapper in Julia to handle errors, like this:

```julia
path = ccall(:getenv, Cstring, (Cstring,), "SHELL")
unsafe_string(path)
"/bin/bash"
```

You will typically write a wrapper in Julia to handle errors, like this:

```julia
function getenv(var::AbstractString)
    val = ccall(:getenv, Cstring, (Cstring,), var)
    if val == C_NULL
        error("getenv: undefined variable: ", var)
    end
    return unsafe_string(val)
end
```

getenv (generic function with 1 method)

```julia
println(getenv("USER"))
println(getenv("SMOKE")) # => will through an exception unless you have SMOKE in your environment
```

getenv: undefined variable: SMOKE

Stacktrace:
[1] error(:String, :String)
 @ Base ./error.jl:42
```
Julia from C/C++

```c
#include <julia.h>
JULIA_DEFINE_FAST_TLS

int main(int argc, char *argv[])
{
 /* required: setup the Julia context */
 jl_init();

 /* run Julia commands */
 jl_eval_string("print(sqrt(2.0))");

 /* notify Julia that the program is about to terminate. */
 jl_atexit_hook(0);
 return 0;
}
```

A proof-of-concept of integrating Julia in a C++ HEP Framework:
https://github.com/grasph/JuliaInACxxHepFramework
A simple HEP example

- Dimuon spectrum using data from the CMS detector.
- Analysis and data available from the CERN opendata portal: here
- Uses the UnROOT package to read the open CMS data from its ROOT format.
- Data format:

<table>
<thead>
<tr>
<th>Column name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nMuon</td>
<td>unsigned int</td>
<td>Number of muons in this event</td>
</tr>
<tr>
<td>Muon_pt</td>
<td>float[nMuon]</td>
<td>Transverse momentum of the muons (stored as an array of size nMuon)</td>
</tr>
<tr>
<td>Muon_eta</td>
<td>float[nMuon]</td>
<td>Pseudorapidity of the muons</td>
</tr>
<tr>
<td>Muon_phi</td>
<td>float[nMuon]</td>
<td>Azimuth of the muons</td>
</tr>
<tr>
<td>Muon_mass</td>
<td>float[nMuon]</td>
<td>Mass of the muons</td>
</tr>
<tr>
<td>Muon_charge</td>
<td>int[nMuon]</td>
<td>Charge of the muons (either 1 or -1)</td>
</tr>
</tbody>
</table>
A simple HEP example

The analysis code

```c
function analyze_tree(t, maxevents = -1)
 bins = 30_000 # Number of bins in the histogram
 low = 0.25 # Lower edge of the histogram
 up = 300.0 # Upper edge of the histogram
 h = HI{Float64}{{Axis}(bins, low, up)}
 for (ievt, evt) in enumerate(t)
 maxevents >= 0 && ievt > maxevents && break
 evt.nMuon == 2 || continue
 dimuon_mass = m(ptetaphim(evt.Muon_pt[1], evt.Muon_eta[1], evt.Muon_phi[1], evt.Muon_mass[1])
 hfill!(h, dimuon_mass)
 end
 h
end;
```

Running the analysis

```c
t = LazyTree(ROOTFile(fname),"Events")
@time h = analyze_tree(t);
```

32.669432 seconds (165.32 M allocations: 22.806 GiB, 12.62% gc time, 2.41% compilation time)

- 33 secs to run over 61.5M events
A simple HEP example

- The results plotted using tools from the Julia ecosystem
A simple HEP example: code speed

- Time to execute the code was compared to implementations performed in Python

<table>
<thead>
<tr>
<th>Julia</th>
<th>Python event loop</th>
<th>Python RDataFrame</th>
<th>Python RDataFrame</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 s</td>
<td>4h 5min</td>
<td>60 s</td>
<td>125s</td>
</tr>
</tbody>
</table>

Similar performance expected for a DataFrame-based Julia implementation

⇒ Julia runs fast out of the box

No need to think of performance when writing the code
Conclusions

- Julia is not just another language. It meets a need, reconciling fast running with easy and fast coding.
- It comes with a large Ecosystem.
- Mature enough to be used for NHEP.

Julia is a very promising language for NHEP.