
Modern      and its 
Software Ecosystem

Attila Krasznahorkay



Introduction

● Will try to convince you why C++ is
great, and why we shouldn’t try to get
rid of it all too eagerly

● After a bit of historical context I will go over
aspects of the language that I think are important for writing good code in it

● C++ is not a “simple” language ☹
○ It is also tremendously rich by now. I do not believe that even every member of the standards 

committee each know every aspect of it.

2



Overview

3



A Brief History

● It came from the desire of using state 
of the art language concepts of the 
time with C’s close-to-hardware 
performance

○ Both considerations still dominate the 
language’s evolution

● 1985 - C++ is released outside of Bell 
Labs

● 1998 - C++(98) is blessed as an ISO 
standard

● 2011 - Start of the “modern era” with 
C++11

4

https://en.cppreference.com/w/cpp/11


Language Standardization

● Is one of surprisingly few (“live”) languages that 
have strict standards defined

○ Showing how much of the world depends on C++

● Does not have a single reference implementation, 
though it also does not have too many of them

○ As complex as the language is, every implementation has 
its own quirks. Testing as many compilers as you can is 
always a very good idea.

● All (modern) compilers allow you to specify which 
standard you want to compile your code with

○ A good reference for standard support is: 
https://en.cppreference.com/w/cpp/compiler_support

5

https://en.cppreference.com/w/cpp/compiler_support
https://isocpp.org/std/the-committee


Language Basics

● Is based on C, but is not simply a 
superset of it

○ In reality though 99.99% of C code will 
work just fine with a C++ compiler

● Is composed of 2 main parts
○ The C++ compiler, implementing all of the 

“compiler features” of the standard
○ The C++ standard library, implementing all 

of the “library features” of the standard

● Has a lot of excellent free resources 
to start learning/using it

○ I myself started with it around 2000 by 
downloading a free book as a PDF…

6

#include <iostream>

int main(int argc, char* argv[]) {

  std::cout << “Received arguments:\n”;
  for (int i = 0; i < argc; ++i) {
     std::cout << “  - ” << argv[i]
               << “\n”;
  }
  std::cout << std::flush;
  return 0;
}



OS / Language Ties

● Its close ties to C have benefitted C++ a lot
○ Linux is C, so any low-level hardware/OS access will always have a C interface

■ Which we can also directly use from C++ as well
■ Windows and macOS are a little different, but you can do a lot with just C++ on those platforms 

as well
○ Since C (especially on Linux) is so important, basically every modern language can cooperate with it

■ Which makes it possible to cooperate with all those languages from C++ as well
● The interoperability with Python became very successful, with many “new languages” 

trying to replicate that success
■ Allowing for 100% interoperability with Windows / macOS as well

7

https://www.python.org/


Language Features to Know 
(About)

8



Disclaimer

● This is of course not meant as a C++ course / tutorial
● I will be highlighting language aspects that I personally think are important for 

modern NHEP code
● Code examples were not checked verbatim, errors/typos are a real possibility…

9



Object Orientation
● Is one of the main features of C++

○ It is one of its strongest features as well. But as 
with anything else, it is very easy to over-use it.

● We should not be afraid of it, if used 
correctly

○ There is a lot of talk about functional programming 
lately. Which can also be very quickly over-used.

○ I personally believe that most applications benefit 
from using some objects “with states”, while trying 
to keep the “long term state” of long-lived objects 
to a minimum.

● Another generally good design is to keep 
“data objects” strictly separate from 
“algorithmic code”

○ Which on its face is contrary to object orientation, 
but greatly helps with code structuring

10

struct Particle {
   float m, px, py, pz;
};

class Electron : public Particle {
public:
   float pt() const {std::sqrt(px*px + py*py);}
};

float invariantMass(const Particle& p1,
                    const Particle& p2);



Templating

● Templating has come a long way since its 
first introduction to C++

● It allows for very powerful generalisation in 
our code

○ But it also comes with significant costs. 
Over-use of it, as with anything, is a bad idea.

● For any functionality, always consider how 
you can provide a thin user-friendly templated 
interface over a “compiled”, possibly 
non-user-friendly low-level interface

○ It will not always be possible to do this, but in 
many cases it is

● Variadic templates can be amazing!
○ But do be mindful of code readability!

11

void setZeroImpl(void* p, std::size_t l) {

   std::memset(p, 0, l);
}

template<typename T,
   std::enable_if_t<std::is_standard_layout_v<T>,
                    bool> = true>
void setZero(T& obj) {

   setZeroImpl(&obj, sizeof(obj));
}

https://en.cppreference.com/w/cpp/language/parameter_pack


Constraints / Concepts

● As powerful as templates can be in 
C++17 already, we will likely rewrite a 
lot of our core code in ATLAS once 
constraints and concepts become 
available

○ The new formalism should allow for much 
easier-to-read code

12

https://en.cppreference.com/w/cpp/17
https://en.cppreference.com/w/cpp/language/constraints


Standard Containers

● Containers in the standard library are 
pretty smart, make use of them!

● std::span and std::mdspan will likely 
reform in the coming years how we 
interact with vector-type data in 
memory

13

https://en.cppreference.com/w/cpp/container/span
https://github.com/kokkos/mdspan
https://en.cppreference.com/w/cpp/container


Standard Algorithms

● Making use of algorithms defined in 
the standard library is generally a 
good idea

○ The language is developed to make these 
algorithms as efficient to execute as 
possible

○ If your code is designed to perform these 
types of operations, it can likely be 
implemented efficiently with C++

● Generic support for non-CPU 
execution is first concerned about 
supporting these algorithms!

14

https://en.cppreference.com/w/cpp/algorithm


Modern(?) Data Structures

● In a lot of “LHC code” we went overboard with object orientation and polymorphism 
to describe detector data in memory

○ We have been un-doing most of it in the last decade…

● My personal views:
○ Use polymorphism very sparingly in your data types, never “own” anything through a base type 

pointer
■ In general only containers should own anything through pointers

○ Make generous use of standard library container types
■ There can be reasons for using a custom container type. But that should only come if you 

absolutely cannot do what you want with just standard containers.
■ Remember though that the internals of such types are not standardized. To be kept in mind 

with I/O code!
○ Be mindful of using AoS vs. SoA, consider making use of podio

■ But don’t put it above everything else! In ATLAS raw performance has so far proved secondary 
to a convenient user interface for “algorithm performance”. 15

https://github.com/AIDASoft/podio/


Memory Management (1)

● Is one of the more difficult problems in 
any large project

● In HEP applications we usually manage 
data objects of different lifetimes in 
central “stores”

○ Making it easier for independent components 
to produce and use a given data object

● Smart pointers have made this type of 
code a lot more readable

○ In modern code you should only construct and 
pass around objects in heap memory using 
smart pointers!

○ In such code any “bare pointer” is known not to 
own the thing that it points to

16

https://en.cppreference.com/w/cpp/memory


Memory Management (2)

● One of the first issues in a 
heterogeneous application is the 
management of memory

● C++17 introduced a very powerful 
new way of managing 
objects/containers in vendor specific 
memory types

○ At the current moment still requiring 
significant effort to use, but C++23 should 
simplify things a little further

17

https://en.cppreference.com/w/cpp/17
https://en.cppreference.com/w/cpp/23
https://en.cppreference.com/w/cpp/memory


Multi-Threading

● One of the places where the standard 
library is just not enough for HEP

○ Even things like OpenMP don’t quite scale for 
our applications

● Many years ago the decision was made 
to use (one)TBB for general 
multi-threading in HEP

○ Which, I believe, proved as one of the most 
successful standardizations in our field

● For small applications of course feel free 
to just use std::thread

○ But for anything bigger, which may need to 
interact with ROOT / Geant4 / etc., TBB is the 
way to go

18

https://www.openmp.org/
https://github.com/oneapi-src/oneTBB
https://en.cppreference.com/w/cpp/thread/thread
https://root.cern/
https://geant4.web.cern.ch/
https://github.com/oneapi-src/oneTBB
https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/thread
https://oneapi-src.github.io/oneTBB/
https://oneapi-src.github.io/oneTBB/


Heterogeneous Computing

● Is becoming very important for HEP
○ Lucky for us, C(++) has been the language of choice for writing “general applications” for GPGPUs 

since the start

● We are in a very tumultuous time with “heterogeneous languages” right now
○ One technical upside is that they are practically all based on LLVM, aiding in harmonisation efforts 

between them

● I believe that in a few more years C++ will standardize a large portion of these 
languages

○ Or at least make it much easier to make use of vendor specific libraries in standard C++ code
19

oneAPI/SYCLROCm/HIP CUDA

https://llvm.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://www.khronos.org/sycl/
https://www.intel.com
https://www.intel.com
https://www.intel.com
https://rocmdocs.amd.com
https://www.amd.com
https://www.amd.com
https://www.amd.com
https://developer.nvidia.com/CUDA-zone
https://www.nvidia.com
https://www.nvidia.com
https://www.nvidia.com


Emerging Possibilities / C++XY Features

● Unified Executors (P2300R4)
○ This is what I have the highest hopes for, but am the most scared of at the same time

■ Some of the interfaces in the proposal do not look nearly as user-friendly as I would like ☹
○ Once in the C++ standard, should allow hardware manufacturers to build vendor-specific binaries out 

of standard C++ code with their own compilers for their own devices
○ Will allow for the declaration of execution graphs (DAGs) for inter-dependent algorithms, which may 

each run on different types of hardware
■ May make some/most of TBB obsolete as well

● Coroutines
○ I am even more skeptical about this one, as I still didn’t see any good explanation of what people 

want to use it for exactly
○ Seemingly it could come in handy for asynchronous execution on heterogeneous hardware

■ But as far as I’m aware, neither Intel or NVIDIA are considering it at the moment in their 
compilers

○ Still, has promise once improvements planned for C++23 will arrive
20

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2300r4.html
https://en.cppreference.com/w/cpp/language/coroutines
https://www.intel.com
https://www.nvidia.com
https://en.cppreference.com/w/cpp/23


Code Build / Management

21



From Simple to Complex

● C++ does not define a standard build or 
packaging system

○ Unlike many modern languages, which come with 
built-in source code management solutions

● This is both a blessing and a curse
○ It allowed for the development of many different 

build systems for different levels of project 
complexity

○ It also presents a big hurdle in managing large 
projects that depend on many other projects

● My personal suggestion
○ Use GNU Make for anything trivial that also 

doesn’t need much portability
○ Use CMake for building anything larger
○ To manage many CMake projects together… 😵

22

g++ -o helloWorld helloWorld.cpp

myExecutable: source1.o source2.o
    g++ -o $@ $^

.SUFFIXES: .cpp .o

.cpp.o:
    g++ -c -o $@ $<

cmake_minimum_required(VERSION 3.17)
project(MySuperProject VERSION 1.0.0 LANGUAGES CXX)

find_package(Boost REQUIRED)

add_executable(myBoostedExecutable
   source1.cpp source2.cpp)
target_link_libraries(myBoostedExecutable
   PRIVATE Boost::boost)❓ vcpkg

❓

https://www.gnu.org/software/make/
https://cmake.org/
https://spack.readthedocs.io/en/latest/
https://spack.readthedocs.io/en/latest/
https://spack.readthedocs.io/en/latest/
https://vcpkg.io/en/index.html
https://vcpkg.io/en/index.html
https://vcpkg.io/en/index.html
https://vcpkg.io/en/index.html
https://rpm.org/index.html


Summary

● Having a formal standard for a language 
that NHEP uses in the long term should 
not be taken lightly

○ With any new thing that we pick up, we must 
seriously consider how long it may live

● Developments are very active in making 
C++2x even more capable, allowing its 
usage on all current and future hardware

○ The “extensions” that we have to use currently 
for heterogeneous hardware may completely 
go away eventually

● C++ has lived, it lives, and it will live (for 
a long time to come…) 😃

23

https://en.wikipedia.org/wiki/ISO/IEC_JTC_1/SC_22


http://home.cern 

24

http://home.cern

