N\

chun)) ATLAS

SLS EXPERIMENT

Modern IC- ana its
Software Ecosystem

Attila Krasznahorkay

BROOKAAVEN Jefferson Lab |17

SOFTWARE
& COMPUTING

5

Introduction

Language Pascal s & . = 8, % e
DATATREVE Smf Rm Sawzall w’l[
ALGOL P, o Ajax Ajax e Object s 55" i

SAM76 Redcode L

e ASS E‘iﬂ{)i; L7 anguage a [erery S
Will try to convince you why C++ is N v:)aeéhcﬁAstLlr!SprB o
. & Cayerne C | amlZ s
great, and why we shouldn’t try to get %X;’gzwe?{i%?%

Programmmg
rid of it all too eagerly =SCriptPHP. ava

Common o Geeren AT

n‘ CAModda-2 Pyt on J 3 o~

After a bit of historical context | will go over
aspects of the language that | think are important for writing good code in it
C++ is not a “simple” language =

o Itis also tremendously rich by now. | do not believe that even every member of the standards
committee each know every aspect of it.

Overview

A Brief History

e |t came from the desire of using state
of the art language concepts of the
time with C’s close-to-hardware

performance
o Both considerations still dominate the
language’s evolution

e 1985 - C++ is released outside of Bell
Labs

o 1998 - C++(98) is blessed as an ISO
standard

e 2011 - Start of the “modern era” with
C++11

https://en.cppreference.com/w/cpp/11

Language Standardization

e |s one of surprisingly few (“live”) languages that

have strict standards defined

o Showing how much of the world depends on C++

e Does not have a single reference implementation,
Congers - T though it also does not have too many of them
o g WGy ° g . o As complex as the language is, every implementation has
ety its own quirks. Testing as many compilers as you can is
always a very good idea.

e All (modern) compilers allow you to specify which

standard you want to compile your code with

o A good reference for standard support is:
https://en.cppreference.com/w/cpp/compiler_support

https://en.cppreference.com/w/cpp/compiler_support
https://isocpp.org/std/the-committee

Language Basics

Is based on C, but is not simply a

superset of it
o Inreality though 99.99% of C code will
work just fine with a C++ compiler

Is composed of 2 main parts
o The C++ compiler, implementing all of the
“‘compiler features” of the standard
o The C++ standard library, implementing all
of the “library features” of the standard

Has a lot of excellent free resources
to start learning/using it

o | myself started with it around 2000 by
downloading a free book as a PDF...

#include <iostream>

int main(int argc, char* argv[]) {

std::cout <<
for (int i =
std: :cout

}
std::cout <<
return 0;

“Received arguments:\n”;
0; 1 < argc; ++1i) {

<< W - << argv[l]

<< \\\n//.

std::flush;

OS / Language Ties

e |Its close ties to C have benefitted C++ a lot

o Linuxis C, so any low-level hardware/OS access will always have a C interface
m Which we can also directly use from C++ as well
m Windows and macOS are a little different, but you can do a lot with just C++ on those platforms

as well

o Since C (especially on Linux) is so important, basically every modern language can cooperate with it

m Which makes it possible to cooperate with all those languages from C++ as well
e The interoperability with Python became very successful, with many “new languages”
trying to replicate that success

m Allowing for 100% interoperability with Windows / macOS as well

https://www.python.org/

Language Features to Know
(About)

Disclaimer

e This is of course not meant as a C++ course / tutorial

e | will be highlighting language aspects that | personally think are important for
modern NHEP code

e Code examples were not checked verbatim, errors/typos are a real possibility...

Object Orientation

struct Particle {
float m, px, py, pz;
}i

class Electron : public Particle {
public:

float pt() const {std::sgrt(px*px + py*py) !}
i

float invariantMass (const Particleé& pl,
const Particleé& p2);

|s one of the main features of C++
o Itis one of its strongest features as well. But as
with anything else, it is very easy to over-use it.

We should not be afraid of it, if used

correctly
o There is a lot of talk about functional programming
lately. Which can also be very quickly over-used.
o | personally believe that most applications benefit
from using some objects “with states”, while trying
to keep the “long term state” of long-lived objects
to a minimum.
Another generally good design is to keep
“data objects” strictly separate from

“algorithmic code”
o Which on its face is contrary to object orientation,
but greatly helps with code structuring

10

Templating

Templating has come a long way since its
first introduction to C++

It allows for very powerful generalisation in
our code

o Butit also comes with significant costs.
Over-use of it, as with anything, is a bad idea.

For any functionality, always consider how
you can provide a thin user-friendly templated
interface over a “compiled”, possibly
non-user-friendly low-level interface

o It will not always be possible to do this, but in
many cases it is

Variadic templates can be amazing!
o But do be mindful of code readability!

void setZeroImpl (void* p, std::size t 1) {

std: :memset (p, 0, 1);
}

template<typename T,
std::enable if t<std::is standard layout v<T>,
bool> = true>
void setZero(T& obj) {

setZeroImpl (&obj, sizeof (obj));

11

https://en.cppreference.com/w/cpp/language/parameter_pack

Constraints / Concepts

As powerful as templates can be in
C++17 already, we will likely rewrite a
lot of our core code in ATLAS once
constraints and concepts become

available

o The new formalism should allow for much
easier-to-read code

Constraints and concepts (since C++20)

This page describes the core language feature adopted for C++20. For named type requirements used in the
specification of the standard library, see named requirements. For the Concepts TS version of this feature, see here.

Class templates, function templates, and non-template functions (typically members of class templates) may be
associated with a constraint, which specifies the requirements on template arguments, which can be used to select the
most appropriate function overloads and template specializations.

Named sets of such requirements are called concepts. Each concept is a predicate, evaluated at compile time, and
becomes a part of the interface of a template where it is used as a constraint:

Run this code
#include <string>

#include <cstddef>
#include <concepts>

h that for

templaté<typenamé T>
concept Hashable = requires(T a)

{ std::hash<T>{}(a) } -> std::convertible to<std::size t>;
}

struct meow {};

tembla{e<Héshable ;I:>
void f(T) {}

int main()
using std::operator""s;

f("abc"s); K, std::string satisfies Hashable

12

https://en.cppreference.com/w/cpp/17
https://en.cppreference.com/w/cpp/language/constraints

Standard Containers

Sequence containers
Sequence containers implement data structures which can be accessed sequentially.

static contiguous array
(class template)

dynamic contiguous array
(class template)
double-ended queue
(class template)

singly-linked list

(class template)
doubly-linked list

(class template)

array (C++11

vector

deque
forward_list(c++11)
list
Associative containers

Associative containers implement sorted data structures that can be quickly searched (O(log n) complexity).
collection of unique keys, sorted by keys

set
(class template)
collection of key-value pairs, sorted by keys, keys are unique
- (class template)
multiset collection of keys, sorted by keys
(class template)
multimap collection of key-value pairs, sorted by keys

(class template)

Unordered associative containers

Unordered associative containers implement unsorted (hashed) data structures that can be quickly searched (O(1)
amortized, O(n) worst-case complexity).

collection of unique keys, hashed by keys

(class template)

collection of key-value pairs, hashed by keys, keys are unique
(class template)

collection of keys, hashed by keys

(class template)

collection of key-value pairs, hashed by keys

(class template)

unordered_set (c++11)
unordered_map (C++11)
unordered_multiset (c++11)

unordered_multimap (c++11)

Container adaptors
Container adaptors provide a different interface for sequential containers.
adapts a container to provide stack (LIFO data structure)
(class template)
adapts a container to provide queue (FIFO data structure)
(class template)

adapts a container to provide priority queue
(class template)

stack
queue

priority_queue

span

A span is a non-owning view over a contiguous sequence of objects, the storage of which is owned by some other object.

a non-owning view over a contiguous sequence of objects

SPAN(C++20) ((12cq template)

Containers in the standard library are
pretty smart, make use of them!
std::span and std::mdspan will likely

reform in the coming years how we
interact with vector-type data in
memory

13

https://en.cppreference.com/w/cpp/container/span
https://github.com/kokkos/mdspan
https://en.cppreference.com/w/cpp/container

Standard Algorithms

Execution policies

Most algorithms have overloads that accept execution policies. The standard library algorithms support
several execution policies, and the library provides corresponding execution policy types and objects. Users
may select an execution policy statically by invoking a parallel algorithm with an execution policy object of
the corresponding type.

Standard library implementations (but not the users) may define additional execution policies as an
extension. The semantics of parallel algorithms invoked with an execution policy object of implementation-
defined type is implementation-defined.

Parallel version of algorithms (except for std::for_each and std: :for_each_n) are allowed to make
arbitrary copies of elements from ranges, as long as both

std::is_trivially copy constructible v<T> and std::is_trivially destructible v<T> are
true , where T is the type of elements.

Defined in header <execution>
Defined in namespace std: :execution

e Making use of algorithms defined in
the standard library is generally a
good idea

(since C++17)

sequenced_policy (C++17)
. parallel_policy . e+ execution policy types
o The language is developed to make these Enceavenzed pottey i
seq (C++17)

algorithms as efficient to execute as .
possible
o If your code is designed to perform these
types of operations, it can likely be
implemented efficiently with C++ et

unseq (C++20)
Defined in namespace std

test whether a class represents an execution policy

is_execution_policy (c++17) (class template)

Feature testing macro: _ cpp_lib_parallel_algorithm (for parallel version of algorithms).
Feature testing macro: __cpp_lib_execution (for execution policies).

Non-modifying sequence operations
Defined in header <algorithm>

ranges::all_of (c++20) checks if a predicate is true for all, any or none of the elements in

Generic support for non-CPU
execution is first concerned about
supporting these algorithms!

ranges::any_of (c++20) arange

ranges: :none_of (c++20)
for_each

ranges: : for_each (c++20)
for_each_n(c++17)

ranges: : for_each_n(c++20)

count
count_if

ranges::count (C++20)
ranges: : count_if (c++20)

mismatch

ranges: :mismatch (c++20)
find

find_if

find_if_not (c++11)

(niebloid)

applies a function to a range of elements

(function template)

applies a function to a range of elements

(niebloid)

applies a function object to the first n elements of a sequence
(function template)

applies a function object to the first n elements of a sequence
(niebloid)

returns the number of elements satisfying specific criteria
(function template)

returns the number of elements satisfying specific criteria
(niebloid)

finds the first position where two ranges differ

(function template)

finds the first position where two ranges differ
(niebloid)

finds the first element satisfying specific criteria
(function template)

14

https://en.cppreference.com/w/cpp/algorithm

Modern(?) Data Structures

e In alot of “LHC code” we went overboard with object orientation and polymorphism

to describe detector data in memory
o We have been un-doing most of it in the last decade...

e My personal views:
o Use polymorphism very sparingly in your data types, never “own” anything through a base type
pointer
m In general only containers should own anything through pointers
o Make generous use of standard library container types
m There can be reasons for using a custom container type. But that should only come if you
absolutely cannot do what you want with just standard containers.
m Remember though that the internals of such types are not standardized. To be kept in mind
with 1/0O code!
o Be mindful of using AoS vs. SoA, consider making use of podio
m But don’t put it above everything else! In ATLAS raw performance has so far proved secondary
to a convenient user interface for “algorithm performance”. 15

https://github.com/AIDASoft/podio/

Memory Management (1)

e |s one of the more difficult problems in
Smart pointers .
Smggi:)e:i:‘tﬁ:di?f:elif\;tomatic, exception-safe, object lifetime management. a n y Ia rg e p rOJ eCt
smart pointer with unique object ownership semantics . I n H EP applications We Usua”y manage

(class template)
smart pointer with shared object ownership semantics

data objects of different lifetimes in

weak reference to an object managed by std::shared ptr
weak_ptr(c++11) §
= (class template)

g P z = = . [11 b
(deprecated in C++11) smart pointer with strict object ownership semantics t I t
auto_ptr [in cre17) e b central Sstores

Helper classes

Pointer categories

unique_ptr(c++11)

provides mixed-type owner-based ordering of shared and weak pointers o Makl ng It eaSIGr for Independent Com ponents

(class template)

enable_shared_from_this(c++11) allows an object to create a shared_ptr referring to itself to produce and use a g'ven data ObJeCt

(class template)

owner_less (C++11)

ex_ception thrown when accessing a weak_ptr which refers to already destroyed . .
e Smart pointers have made this type of

default_delete (C++11) default deleter for unique_ptr

Smart pointer adaptors A COd e a I Ot m O re read a b I e

interoperates with foreign pointer setters and resets a smart pointer on

out_ptr_t(c++23) destruction o In modern code you should only construct and
out ptr(cs+23) cfreatesan out]ﬁptrit with an associated smart pointer and resetting arguments paSS around ObJeCtS |n heap memory US|ng
- (function template

interoperates with foreign pointer setters, obtains the initial pointer value from a

inout_ptr_t(c++23) smart pointer, and resets it on destruction Smart p0| nte rS'

(class template)
creates an inout_ptr_t with an associated smart pointer and resetting

inout_ptr (c++29 arguments " o In such code any “bare pointer” is known not to
own the thing that it points to

16

https://en.cppreference.com/w/cpp/memory

Memory Management

Allocators

Allocators are class ing memory ion strategy. This allows generic containers to decouple
memory management from the data itself.
Defined in header <nemory>

the default allocator
(class template)
provides information about allocator types

allocator

allocator_traits(c++11)

H . H (class template)
. n e O t e I rSt I SS u eS I n a records the address and the actual size of storage allocated
allocation_result(c++23) by allocate at_least

(class template)

allocates storage at least as large as the requested size via
allocate_at_least(c++23) an allocator

heterogeneous application is the —

allocator_arg_t(c++11) (
class)

an object of type std: :allocator arg_t used to select

allocator_arg(c++11) allocator-aware constructors
management of memor
checks if the specified type supports uses-allocator
uses_allocator (C++11) construction

(class template)
prepares the argument list matching the flavor of uses-

.
+ + uses_allocator_construction_args (c++20) allocator construction required by the given type
. (function template)
——

creates an object of the given type by means of uses-
make_obj_using_allocator (c++20) allocator construction
(function template)

.
n m n n creates an object of the given type at specified memory
eW Wa O a a I uninitialized_construct_using_allocator (c++20) location by means of uses-allocator construction
(function template)
Defined in header <scoped_allocator>

implements multi-level allocator for multi-level containers

scoped_allocator_adaptor (c++11)
(class template)

objects/containers in vendor specific BT

polymorphic_allocator (c++17) the std: :memory_resource it is constructed with

memory types PR

Memory resources implement memory allocation strategies that can be used by std: :pmr: :polymorphic_allocator

Defined in header <nemory_resource>
Defined in namespace std: :pnr

o At the current moment still requiring

(class)

returns a static program-wide std: :pmr: :memory resource that uses the
global operator new and operator delete to allocate and deallocate

significant effort to use, but C++23 should

(function)

null_memory_resource (C++17) retums austalic stdcapn
(function]

Simplify thingS a Iittle fu rther R TR gets the default std: :pmr: :memory_resource

(function)
sets the default st
(function]
a set of constructor options for pool resources
(class)
a thread-safe std: :pmr: :memory_resource for managing allocations in
synchronized_pool_resource (c++17) pools of different block sizes

(class)

a thread-unsafe std: :pmr
unsynchronized_pool_resource (c++17) pools of different block sizes

(class)

a special-purpose std: :pmr: :memory resource that releases the 1 7
monotonic_buffer_resource (c++17) allocated memory only when the resource is destroyed

(class)

memory resource that performs no allocation

set_default_resource (c++17) +EPMCY Memory Jresource

pool_options (c++17)

emory_resource for managing allocations in

https://en.cppreference.com/w/cpp/17
https://en.cppreference.com/w/cpp/23
https://en.cppreference.com/w/cpp/memory

Multi-Threading

Thread support library

C++ includes built-in support for threads, mutual exclusion, condition variables, and futures.

Threads

Threads enable programs to execute across several processor cores.

Defined in header <thread>

manages a separate thread

thread (c++11)
jthread (c++20)

Functions managing
Defined in namespace tH

yield (c++11)
get_id(c++11)
sleep_for (c++11)

sleep_until(c++11)

oneAPI Threading Building Blocks (oneTBB)

This document contains information about oneTBB. It is a flexible performance library that let you break
computation into parallel running tasks.

The following are some important topics for the novice user:

« Get Started with oneTBB gives you a brief explanation of what oneTBB is.

« oneTBB Benefits describes how oneTBB differs from typical threading packages.

« Package Contents describes dynamic library files and header files for Windows*, Linux*, and
macOS* operating systems used in oneTBB.

The following is an important topic for the experienced user:
Migrating from Threading Building Blocks (TBB) describes how to migrate from TBB to oneTBB.

« Getting Help and Support
» Notational Conventions

« Introduction

» oneTBB Benefits

« Get Started with oneTBB

o System Requirements
o Before You Begin

o Example

o Find more

» oneTBB Developer Guide

o Package Contents

One of the places where the standard

library is just not enough for HEP
o Even things like OpenMP don’t quite scale for
our applications

Many years ago the decision was made
to use (one)TBB for general
multi-threading in HEP

o Which, | believe, proved as one of the most
successful standardizations in our field

For small applications of course feel free
to just use std::thread
o But for anything bigger, which may need to

interact with ROOT / Geant4 / etc., TBB is the
way to go

18

https://www.openmp.org/
https://github.com/oneapi-src/oneTBB
https://en.cppreference.com/w/cpp/thread/thread
https://root.cern/
https://geant4.web.cern.ch/
https://github.com/oneapi-src/oneTBB
https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/thread
https://oneapi-src.github.io/oneTBB/
https://oneapi-src.github.io/oneTBB/

Heterogeneous Computing

e Is becoming very important for HEP
o Lucky for us, C(++) has been the language of choice for writing “general applications” for GPGPUs
since the start
e We are in a very tumultuous time with “heterogeneous languages” right now
o One technical upside is that they are practically all based on LLVM, aiding in harmonisation efforts
between them

[AMD:I} [@nvmm] [(intel”) 1 &%M

e | believe that in a few more years C++ will standardize a large portion of these

languages
o Or at least make it much easier to make use of vendor specific libraries in standard C++ code
19

https://llvm.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://www.khronos.org/sycl/
https://www.intel.com
https://www.intel.com
https://www.intel.com
https://rocmdocs.amd.com
https://www.amd.com
https://www.amd.com
https://www.amd.com
https://developer.nvidia.com/CUDA-zone
https://www.nvidia.com
https://www.nvidia.com
https://www.nvidia.com

e Unified Executors (P2300R4)

o This is what | have the highest hopes for, but am the most scared of at the same time
m Some of the interfaces in the proposal do not look nearly as user-friendly as | would like =
o Once in the C++ standard, should allow hardware manufacturers to build vendor-specific binaries out
of standard C++ code with their own compilers for their own devices
o Will allow for the declaration of execution graphs (DAGs) for inter-dependent algorithms, which may
each run on different types of hardware
m May make some/most of TBB obsolete as well

e Coroutines
o | am even more skeptical about this one, as | still didn’t see any good explanation of what people
want to use it for exactly
o Seemingly it could come in handy for asynchronous execution on heterogeneous hardware
m But as far as I'm aware, neither Intel or NVIDIA are considering it at the moment in their
compilers
o Still, has promise once improvements planned for C++23 will arrive

20

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2300r4.html
https://en.cppreference.com/w/cpp/language/coroutines
https://www.intel.com
https://www.nvidia.com
https://en.cppreference.com/w/cpp/23

Code Build / Management

From Simple to Complex

C++ does not define a standard build or

packaging system
o Unlike many modern languages, which come with
built-in source code management solutions

This is both a blessing and a curse
o It allowed for the development of many different
build systems for different levels of project
complexity
o It also presents a big hurdle in managing large
projects that depend on many other projects
My personal suggestion
o Use GNU Make for anything trivial that also
doesn’t need much portability
o Use CMake for building anything larger
To manage many CMake projects together... &%

gt+ —-o helloWorld helloWorld.cpp

myExecutable: sourcel.o source2.o
gt+ -o $Q@ s$°

.SUFFIXES: .cpp .O

.Cpp.0:
g++ -c -o $@ $<

cmake minimum required(VERSION 3.17)
project (MySuperProject VERSION 1.0.0 LANGUAGES CXX)

find package (Boost REQUIRED)

add executable (myBoostedExecutable
sourcel.cpp source2.cpp)

target link libraries (myBoostedExecutable
PRIVATE Boost::boost)

22

https://www.gnu.org/software/make/
https://cmake.org/
https://spack.readthedocs.io/en/latest/
https://spack.readthedocs.io/en/latest/
https://spack.readthedocs.io/en/latest/
https://vcpkg.io/en/index.html
https://vcpkg.io/en/index.html
https://vcpkg.io/en/index.html
https://vcpkg.io/en/index.html
https://rpm.org/index.html

Summary

Working Group 4
ISO/IEC JTC 1/SC 22/WG 1
ISO/IEC JTC 1/SC 22/WG 2
ISO/IEC JTC 1/SC 22/WG 3
ISO/IEC JTC 1/SC 22/WG 4
ISO/IEC JTC 1/SC 22/WG 5
ISO/IEC JTC 1/SC 22/WG 6
ISO/IEC JTC 1/SC 22/WG 7
ISO/IEC JTC 1/SC 22/WG 8
ISO/IEC JTC 1/SC 22/WG 9
ISO/IEC JTC 1/SC 22/WG 10
ISO/IEC JTC 1/SC 22/WG 11
ISO/IEC JTC 1/SC 22/WG 12
ISO/IEC JTC 1/SC 22/WG 13
ISO/IEC JTC 1/SC 22/WG 14
ISO/IEC JTC 1/SC 22/WG 15
ISO/IEC JTC 1/SC 22/WG 16
ISO/IEC JTC 1/SC 22/WG 17
ISO/IEC JTC 1/SC 22/WG 18
ISO/IEC JTC 1/SC 22/WG 19
ISO/IEC JTC 1/SC 22/WG 20

ISO/IEC JTC 1/SC 22/WG 21

ISO/IEC JTC 1/SC 22/WG 22
ISO/IEC JTC 1/SC 22/WG 23
ISO/IEC JTC 1/SC 22/WG 24

Working Area 4 Status ¢
PLIP (Programming Languages for Industrial Processes) | Disbanded ‘
Pascal Disbanded
APL Disbanded
COBOL Active
Fortran Active
ALGOL Disbanded
PL/I Disbanded
BASIC Disbanded
Ada Active
Guidelines Disbanded .
Binding Techniques Disbanded
Conformity Disbanded
Modula-2 Disbanded
C Active
POSIX Disbanded
ISLisp Disbanded
Prolog Active
FIMS (Form Interface Management System) Disbanded
Formal Specification Languages Disbanded
Internationalization Disbanded .
CH++ Active >
PCTE (Portable Common Tool Environment) Disbanded
Programming Language Vulnerabilities Active
Linux Standard Base (LSB) Active

Having a formal standard for a language
that NHEP uses in the long term should
not be taken lightly

o With any new thing that we pick up, we must
seriously consider how long it may live

Developments are very active in making
C++2x even more capable, allowing its

usage on all current and future hardware
o The “extensions” that we have to use currently
for heterogeneous hardware may completely
go away eventually

C++ has lived, it lives, and it will live (for
a long time to come...) &

23

https://en.wikipedia.org/wiki/ISO/IEC_JTC_1/SC_22

Cﬁw
\
N/ A

http://home.cern

http://home.cern

