= PRINCETON (g iris
UNIVERSITY hep

History and Adoption of Programming Languages in NHEP

Jim Pivarski

Princeton University — IRIS-HEP

February 8, 2202

1/50

o @

This talk is a historical overview of widely used programming languages in NHEP,
focusing on the motivations for each language's adoption.

2/50

This talk is a historical overview of widely used programming languages in NHEP,
focusing on the motivations for each language's adoption.

There have always been physicists at the edge, trying out new languages, but
most physicists only use one or two. The field as a whole changes slowly.

2/50

This talk is a historical overview of widely used programming languages in NHEP,
focusing on the motivations for each language's adoption.

There have always been physicists at the edge, trying out new languages, but
most physicists only use one or two. The field as a whole changes slowly.

Thesis: (1) change motivated more by “pain points” than incremental benefits,

2/50

This talk is a historical overview of widely used programming languages in NHEP,
focusing on the motivations for each language's adoption.

There have always been physicists at the edge, trying out new languages, but
most physicists only use one or two. The field as a whole changes slowly.

Thesis: (1) change motivated more by “pain points” than incremental benefits,

(2) though each of these transitions happened in a unique way.

2/50

Three major transitions (so far)

Fortran

Assembly

1940 1950 1960 1970 1980 1990 2000 2010 2020

Adoption of
Fortran: immediate; for syntax and portability; no infrastructure to replace
C++: long overdue; for data structures; replaced infrastructure in a burst
Python: slowly overtook its alternatives; for interactivity; different niche

3/50

Part 1: Fortran

4/50

NHEP was an early adopter of digital computers 4

One of the very first applications was Monte Carlo (neutron transport).

__ Nicholds
W Metropdlis B8
i li
1 |1 il

5/50

And so was data analysis 4

Luis Alvarez's group at the Bevatron

The problem was the same then as it is now

Unlabeled photos
come out of the
detector.

7/50

The problem was the same then as it is now

Unlabeled photos
come out of the
detector.

Labeling them
turns them into
quantities to
compute.

7/50

The problem was the same then as it is now

55 57 59 1] 63 65 67

1,000,000 —P——2——F———T1—7—T—1-
800,000
600,000}
Unlabeled photos § 400,000 £
: Peok Spiral §_
come out of the £ 200,000} Rindnigsan—| 2002
' oc
2 & .8
detector. £ o000 0o 22
£ 100,000— A
80,0001 J7o0 23
60,000(- ——t T e 8
. , 150 €
Labeling them 40,000]- Firet Fronclensteln sv"°':~,;°',:,5§'r?“"n'— £
turns them into Eatimare SMp 50—
- 20,0001 46 4qy Py i —
quantities to X
| MP 2¢
compute. 100001 4 gyl MRZB——————————0
MPID -t s
MPIA MPIB bt -6 2
1. =
H
THE MORE Measured events 13 2
per hour Jda §
EVENTS THE ot a
personnel
BETTER”' 515 * 517 * 519 ' Sll h63 * Gl!) ' 617 !
Y
ears —

Fig. 9.
Measuring Rates.

7/50

The problem was the same then as it is now

100000 I I T T T T o
10000
1000 092 CMS
CDF ® & CIN
100 . o 9
10 ®
1

0.1

events per second

0.01

0.001

0.0001 ' ' | | |

1950 1960 1970 1980 1990 2000 2010 2020 2030
8/50

|dentifying tracks was beyond the capabilities of software &

So they invented
special input devices

to streamline
data-entry.

|dentifying tracks was beyond the capabilities of software &

Madeleine (née Goldstein)
Isenberg, UCLA class of '65

“We scanners would review each

frame of film, and per the brief
instructions we had been given,
looked for any ‘unusual activity.’

“The scanner had to use both
hands, a joystick in each, and turn
them clockwise or anti-clockwise,
to align a double crosshair cursor
at several sequential positions on
a track.”

10/50

Madeleine (née Goldstein)
Isenberg, UCLA class of '65

“A quick but firm tap on the foot-
pedal punched the coordinate val-
ues onto an IBM card that had
been fed into the keypunch ma-
chine.

“The precious stack of IBM cards
were passed to the physicists, who
would then process the data in
the existing IBM processors, us-
ing software that would calculate
the best fit for these coordinates,
and thereby mathematically simu-
late the curvature of the track.”

10/50

At first, the software was written in assembly (example from 1958)

o UCRL8282
MASTER

i UNIVERSITY OF

CALIFORNIA

Radiation
cﬁabomrgry

ROTANGER: A PROGRAM FOR CALCULATING
ORBITS IN A CYCLOTRON BY THE USE OF
THE 1BM-650 DATA-PROCESSING COMPUTER

BERKELEY, CALIFORNIA

11/50

ROTANGER:
ORBITS IN
THE IBM-§

BY

UCRL-8282

nstants in the expansion of the.

magnetic field are changed, and others. An
interpolation routine to fix the

regenerator position is incl
progeam it in fxed point, and valuce are given with cight decimal.
his sets an upper bound on the magnitude of numbers, which can be
3599999995, "1 ﬂvtr[\nw Gccurs a Nttle before. this value, sbo
computation of v4; however, a rescaling could prevent this. The inte
cach advance in the num,

2t 0.1 radian for most orbit:
varisbles as computed in the iterative integration procedure is also adjuatable
and has been used at .00000020 for most cases. The similar terme ¢(and

hg are used in the starting program and are set at one-half the values for
<and b,

At the end of each integration step, the square of the total velocity is
computed. The constancy of this term is used o judge the accumulation of
errors in the integration of the three equations.
COMPUTATIONS
Equations of Motion

The thrée-component equations cbtained for the Lorentz equation are:

a?
o
R)
W rE
.
IR L LN

where we have assumed an azimuthally uniform field, i.e.,

0, and
note that B, = B,(r,z) and B = B, (r,2).

syochonous radius

s R corresponds to the beginning radius o
I d he

T
1 the orbit departare Crom th raitus Trom
The ,m.(ieid vatuon are
nofmalided by dividing them by ne Ti¢id on the edian pranc at he
chronous o o).

he center STtRE Cylotion is ¥ £

“Our eduations then become:

: en, (RO B, (e.2)
mwt(%) -2 — ®e0 ¥ Fwy

)

11/50

At first, the software

vas s
<and b,

At the end of e
computed. The cons

errors in the integra

c The thrée-com|

ROTANGER: and
ORBITS IN
THE IBM-§

BY

-16- UCRL-8282

Appendix 6

Block Diagram of Rotanger

Read Initial Conditions

Starting Part of
Integration Subroutine

Compute second Derivatives
including B_ and B_

11/50

At first, the software was written in assembly (example from 1958) ' L

-1e UCRL-8282

Block Diagram

od at

hoare. used in the ot
S N
At the end of o Gmpte
computed: - The cons including
Gompute

errors in the integra

Compute
c The thrée-com| including|

ROTANGER: et

ORBITS IN Tuterpola

THE IBM-§ here we Compus
ek

Print

BY

BETEyNEAEEEACERECERECIREIEICICS

11/50

At first, the software was written in assembly (example from 1958) ' L

N\ 1
&0 1
1
- oRL-s282
U
Blocik Diagram s i m
as ed at - -
o are used in the 5t -
1 L) CRR
errors in the integra Compute -
< The three-com| | oo = N
o Ea— .
ROTANGER: aad - "
ORBITS IN Tnterpola P r
THE 1BM-§] N ‘ Compute o o
shere we Ohtain ne < -
e Print =
- b
B » - .

11/50

At first, the software was written in assembly (example from 1958) ' L

N\ 1
&0 1
! 1
U 20 UcRL-8282
Blocik Diagram
e ga
Boare uiedin he o
. R - -
1 compted e o et =
errors in the integral Compute -
< The three-com| | oo - -
R e
o - B
ROTANGER: aad - _
ORBITS IN Taterpota] -
THE 1BM-§] Compute -
e Print - B
BE - - L o

- UCRL-11222

FORTRAN PROGRAM SUMX
Lynn Champomier

Lawrence Radiation Laboratory
University of California
Berkeley, California

April 15, 1964

ABSTRACT

RTRAN program SUMX is a data-summarizing program. SUMX con-
structs displays, in the form of lists, histograms, graphs, etc., from infor-
mation extracted from sets of records on an input tape. Control cards specify
the sets of records, the information to be extracted from each set, and
finally, what sort of display is to be made from the information.

& o I T N

s LTIV seosaseron next atcots

12/50

CERN Courier special issues on computing

September 1967 March 1972

CERN CERN

Fortran Fortran
mentioned mentioned
3 times 18 times

o Dl

|
|
i

.

l

13/50

CERN Courier special issues on computing

September 1967

Most of the programming was done in
the basic instructions of the computer, but
advantages in the use of Autocode (a so-
called higher-level language in which the
user writes his program intext and algebra-
like equations which the computer trans-
lates into its own basic instructions) were
becoming appreciated, amidst protests
from the computer purists who believed
that widespread use of such languages
would lead to inefficient use of the com-
puter. So it did, in a way, butitalso allowed
many more scientists to use the computer,
which is perhaps a better criterion for
efficiency. Essentially, all research labo-
ratories to-day use Fortran, Algol, Autocode
or similar language for scientific work.

March 1972

The present central computing ser-
vice operates 24 hours per day, seven
days per week including most holi-
days. It is still predominately ‘batch-
oriented ’ with the main programming
languages being FORTRAN and
assembly language. A very large pro-
gram and subroutine library is avail-
able on disk in re-locatable form, and
a tape library of some 35000 labelled
tape reels is maintained close to the
two computers.

ran
tioned
mes

13/50

Part 1 conclusions: adoption of Fortran

NHEP adopted Fortran for data analysis in the first years after its release in 1956.

14 /50

Part 1 conclusions: adoption of Fortran

NHEP adopted Fortran for data analysis in the first years after its release in 1956.

“Algebra-like equations” (i.e. FORmula-TRANslation) was an obvious benefit.

14 /50

Part 1 conclusions: adoption of Fortran

NHEP adopted Fortran for data analysis in the first years after its release in 1956.
“Algebra-like equations” (i.e. FORmula-TRANslation) was an obvious benefit.

Also portability: assembly programs only work on a single model of computer.

14 /50

Part 1 conclusions: adoption of Fortran

NHEP adopted Fortran for data analysis in the first years after its release in 1956.
“Algebra-like equations” (i.e. FORmula-TRANslation) was an obvious benefit.
Also portability: assembly programs only work on a single model of computer.

Why Fortran and not something else (e.g. ALGOL)?
It was IBM’s product, and most labs were buying IBM computers.

14 /50

Part 2: C++

15 /50

Fortran lacked an essential feature for NHEP

Example: High Energy Physics events are made up of vertices, every

vertex has tracks associated to it.

Also, to each event is associated a

bank of information concerning electronic counter information to be used

o
later. Assume the event to be a two-prong with an associated V .

The pictorial graph for this event information is then

R.K. Bock, Initiation
to Hydra (1974)

EVENT
COUNTER
[LNFORMATIO] VERTEX VERTEX
INCIDENT OUTGOING OUTGOING POSITIVE NEGATIVE
TRACK TRACK TRACK TRACK TRACK

16 /50

Fortran lacked an essential feature for NH

Example: High Energy Physics events are made up of vertices, every
vertex has tracks associated to it. Also, to each event is associated a
bank of information concerning electronic counter information to be used

o
later. Assume the event to be a two-prong with an associated V .

This wasn't a part of Fortran until 1991.
Physicists created libraries for tree-like data.

OUNTER PRIMARY \Y
NFORMATIO VERTEX VERTEX
R.K. Bock, Initiation
[i to Hydra (1974)
INCIDENT OUTGOING OUTGOING POSITIVE NEGATIVE
TRACK TRACK TRACK TRACK TRACK

16 /50

Fortran lacked an essential feature for NHEP

P. Lebrun and A. Kreymer, High Level Language Memory
Management on Parallel Architectures (1989)

Years ago, the need for "pointer based” FORTRAN packages, such as HYDRA or BOS,
later on ZBOOK [1], ZEBRA {2] or YBOS, became a necessity to efficiently manage the user
heap space on a tight fixed size physical memory, in order to support large applications, such
as code management systems or histogram packages.[1] Later on, these memory management
systems were used not only to allocate dynamically space in a fixed size heap space, but also as
a tool to organize and manage sensibly a complicate set of structures describing a detector, or an
elementary particle collision. These packages are the essential building blocks for HEP data
bases. They were designed to run mainly on single CPU systems and ignored entirely the
existence of virtual memory available within FORTRAN through - system dependent ! - system
calls. .-

17/50

inside a program. Logical relations
between banks are expressed by
including the address of one bank in
the link-table of an other bank. For
example, all tracks of a vertex-point
are linked together by each track
pointing to the next. Such a data-
structure contains not only the nu-
meric information but also logical infor-
mation about the object it describes.

The program modularity is achieved
by organizing the program into pro-
cessors each having a well defined
task. This task is entirely describable
as a transformation applied to a data-
structure in the dynamic store : some
banks provide the input data to the
processor and some contain the
desired results. For a given appli-
cation, a steering program is written
to coordinate the operations of the
processors needed. Any processor
consists of at least one FORTRAN
subroutine, its operation being in-

voked by transferring control to this .

Fortran lacked an essential feature for NHEP

subroutine. As a matter of internal
organization, the processor may be
divided up into the primary and
several secondary subroutines. The
programming of a processor has to
observe certain conventions in order
to be compatible with the HYDRA
system. Precisely these conventions,
which are the same through the
whole program (indeed through all
HYDRA programs) are responsible for
the easy documentation and the good
readability of the program.

The processors are supported by
the HYDRA system. Its services are
requested with CALL statements
much like the services of the FOR-
TRAN system which are part of the
definition of the basic language. In
this sense, the HYDRA system is an
extension of the FORTRAN language
to provide - primarily - dynamic me-
mory management facilities. Some
languages contain these facilities in
their basic definition, but the HYDRA-

FORTRAN combination has two im-
portant advantages — the execution
speed is that of a normal FORTRAN
program, with very little overhead for
the HYDRA system, and FORTRAN is
a commonly accepted language.
Because of the need for machine
independence (so that the same pro-
grams can be used on a variety of
computers) the processors for the
new bubble chamber program, as
well as the HYDRA system packages,
have been written in ANSI FORTRAN
which is the internationally accepted
minimum requirement expected from
anybody’s compiler.

The bubble chamber programs of
the HYDRA form will come into oper-
ation in 1972. They should help to
tear down the walls that have some-
times threatened, on the data han-
dling side, to separate physicists from
computer specialists, or bubble
chamber groups from each other and
from physicists using other techniques.

R.K. Bock and J. Zoll, Central Computers in the Analysis, CERN Courier No. 3, Vol. 12, March 1972

18/50

{BE
Beyond Fortran, data structures were a common language feature &

COBOL (1959)
01 Point.

05 x pic 9(3).
05 vy pic 9(3).

ALGOL-68 (1968)

STRUCT (

MODE POINT
INT x,
INT y

)i

Simula (1962)

Class Point (x, Vy);
Integer x, y;

! define attributes...

! define methods...
End of Point;

Pascal (1970)

type Point = record
X, y: integer;

end;

PL/I (1964)

define structure
1 point,

2 x integer,

2 y integer;

C (1972)

typedef struct Point {
int x;
int vy;

} Point;

19/50

Beyond Fortran, data structures were a common language feature

Paul Kunz, Physics Analysis Tools (1991)

The C programming language is much better than struct track {
FORTRAN for both data structures and configuration con- float px;
trol. Shown in Figure 4 are some segments of C code that float py;:

float pz;

one might use in dealing with a track entity. Note the ex-
pressive power of the language in that access to variables is
by full name. Also, the C language deals directly with the struct track **mctrack;
dynamic memory allocation of such structures since the
memory allocation functions are part of its standard library.
Finally, there’s nothing lost in using a symbolic debugger
because structures are part of the language, thus known to Figure 4. Segments of C code.
the existing debugger.

Clearly, C is much better at handling data structures
then FORTRAN plus some additional package. Although
many large collaborations have discussed abandoning FOR-
TRAN, none has done so (yet). One reason they stayed with
FORTRAN is reluctance to learn a new language, which is
ironic since in each case they had to learn a big system to
complement FORTRAN.

}:

px = metrack[it)->px;

20/50

Beyond Fortran, data structures were a common language feature

Paul Kunz, Physics Analysis Tools (1991)

The C programming language is much better than struct track {
FORTRAN for both data structures and configuration con- float px;
trol. Shown in Figure 4 are some segments of C code that float py:
one might use in dealing with a track entity. Note the ex- s float pz:
pressive power of the language in that access to variables is
by full name. Also, the C language deals directly with the struct track **mctrack;
dynamic memory allocation of such structures since the - e
memory allocation functions are part of its standard library. px = metrack[it]->px;
Finally, there’s nothing lost in using a symbolic debugger
because structures are part of the language, thus known to Figure 4. Segments of C code.

the existing debugger.

Clearly, C is much better at handling data structures .
then FORTRAN plus some additional package. Although In the first 15 years of CHEP (1985-2000),
many large collaborations have discussed abandoning FOR- . .
TRAN, none has done so (yet). One reason they stayed with similar Suggestlons Were? made fOIF ALGO |_,
FORTRAN is reluctance to learn a new language, which is P |_/| , Pascal, Ada, Eiffel, Objectlve C,

ironic since in each case they had to learn a big system to
complement FORTRAN. Java, and of course C++.

20/50

Fortran did finally add data structures

Fortran-90 (1991)

type Point
integer :: x
integer :: y

end type Point

21/50

Fortran did finally add data structures

René Brun, Technologies, Collaborations and
Languages: 20 Years of HEP Computing (2012)

One major stumbling block in the move to FORTRAN 90 was the question of
Input/Output. With ZEBRA, we had a simple way to describe data structures (banks)

Fortra n—90 (1991) built out of basic types (typically integers and floats). Because FORTRAN 90
supported derived data types, it was theoretically possible to implement the most
type Point complex data structures that we used to model with ZEBRA. In particular ZEBRA

. was able to write and read these data structures from machine independent files.
integer :: x

integer :: y

dt Point The need for introspection to deal with derived data types doomed the efforts
en ype Foin to move to FORTRAN 90. It was going to be as hard (if not more) with C++,
but we did not know this at the time.

Using FORTRAN 90, it appeared pretty hard to make a general implementation
equivalent to ZEBRA without parsing the data type description in the FORTRAN 90
modules. In fact, we encountered the same problem later with C++-, but we naively
ignored at that time how much work it was to implement a data dictionary or
reflection system describing at run time the type of objects. Mike Metcalf was aware
of the problem and we reported this to a special session of the FORTRAN committee
at CERN in 1992. As most members in the committee had no experience with this
problem and thought that this was a database problem and not a language problem,

the enhancements that we were expecting in the language did not happen. ,
21/50

So actually, NHEP needs:

1.
2.
3.
4.

rich data structures in the programming language,
serialization of those structures to/from disk,
read compatibility for old data versions (schema evolution),

mapping between persistent data and language’s structures
(which can be implemented with type-introspection).

22/50

So actually, NHEP needs:

1. rich data structures in the programming language,

2. serialization of those structures to/from disk,

3. read compatibility for old data versions (schema evolution),
4.

mapping between persistent data and language’s structures
(which can be implemented with type-introspection).

HYDRA/ZEBRA /etc. approached these as a single problem.

22/50

So actually, NHEP needs:

1. rich data structures in the programming language,

2. serialization of those structures to/from disk,

3. read compatibility for old data versions (schema evolution),
4.

mapping between persistent data and language’s structures
(which can be implemented with type-introspection).

HYDRA/ZEBRA /etc. approached these as a single problem.
In Java, (1-2) is a language problem, (3-4) is for databases.

22/50

So actually, NHEP needs:

1. rich data structures in the programming language,

2. serialization of those structures to/from disk,

3. read compatibility for old data versions (schema evolution),
4.

mapping between persistent data and language’s structures
(which can be implemented with type-introspection).

HYDRA/ZEBRA /etc. approached these as a single problem.
In Java, (1-2) is a language problem, (3-4) is for databases.
Object databases focus on (4)...

22/50

I

So it wasn't just a matter of adding another language to the mix.

The whole infrastructure, including 1/0, had to change.

You only want to do that once!

23/50

Programming languages in CHEP title/abstract regex matches

percent of talks with matching title/abstract

year
'85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 'O1 '0O3 '04 '0O6 'O7 '09 '10 '12 '13 '15 '16 '18 '19 '21

16
. —-- FORTRAN
1wl i \.\ — O\
, \ JaVa
i ! —— \bAda\b
124 , \ —— Pascal
! |
i .
10 A ,
I
811
i
611
!
41! .
2 A7\ N A S oA A S e
0 // \J """ e / i 0
1 2 3 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CHEP number

16

14

12

10

24/50

percent of talks with matching title/abstract

year
'85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 '01 '03 '04 '06 '07 '09 'l0 '12 '13 'l5 'l6 '18 '19 '21
—— \bROOT\b
----- \b(Objectivity| ORM|OODB(|MS))\b
81 —-- \b(Hippoplotamus|HippoDraw)\b
—=- \b(Java Analysis Studio|JAS|Jas4pp|FreeHEP)\b
\bLHC\+\+
6.
4 4
2 H
’y
/ ,-\.\ . :
N TN o Ne N e
0 T T T ./ —T f t ’ y - -

CHEP number

f T y y —=F T e T T T T T 0
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

25/50

Total number of talks (denominator): dips are small CHEPs &

year
‘85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 'O1 '0O3 '04 '06 'O7 '09 '10 '12 '13 '15 '16 '18 '19 '21

500 1 500
400 400
kY
©
5 300 300
1
Qo
g
c
200 200
!
100 1 100
0 T T T T T T T T

T T T T T T T T T T T T T T T 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CHEP number

26/50

Some advances had to be rediscovered outside NHEP

Dremel: Interactive Analysis of Web-Scale Datasets (Google, 2010)

storage and reduce CPU cost due to cheaper compression. Column
stores have been adopted for analyzing relational data [1] but to the
best of our knowledge have not been extended to nested data mod-
els. The columnar storage format that we present is supported by
many data processing tools at Google, including MR, Sawzall [20],
and FlumeJava [7].

In this paper we make the following contributions:

e We describe a novel columnar storage format for nested
data. We present algorithms for dissecting nested records
into columns and reassembling them (Section 4).

Columnar, nested data was a ROOT feature 15 years earlier.

28/50

Part 2 conclusions: adoption of C++

NHEP adoption of C++ (or similar) was held back by the fact that we had
unique infrastructure.

29/50

Part 2 conclusions: adoption of C++

NHEP adoption of C++ (or similar) was held back by the fact that we had
unique infrastructure.

It's important to have data structures in the language, but also on disk.

29/50

Part 2 conclusions: adoption of C++

NHEP adoption of C++ (or similar) was held back by the fact that we had
unique infrastructure.

It's important to have data structures in the language, but also on disk.

Our solutions were both more advanced and less modular than others.

29/50

Part 2 conclusions: adoption of C++

NHEP adoption of C++ (or similar) was held back by the fact that we had
unique infrastructure.

It's important to have data structures in the language, but also on disk.
Our solutions were both more advanced and less modular than others.

Many options considered in late 1990's; C++ with ROOT 1/0O became dominant.

29/50

Part 3: Python

30/50

End-stage data analysis benefits from interactivity

So-called interpretive computer lan-
guages, like BASIC, have turned out

to be convenient for people ‘talking’
with the CAMAC modules via the on-
line computers at least when setting
up and testing equipment. Interpreta-
tion is unfortunately slow and there-

be written in the machine language.
Test and sample programs, where time

spacisl issuz
O GOMpUiers

¢ fore the data acquisition programs

used during the production runs must
|I
l

o i is not so crucial, are mostly written
4 . in FORTRAN. However, the flexibility
of BASIC can be combined with the

efficiency of the other languages via
subroutine calls from BASIC.

I

NHEP has a history of custom solutions for interactivity:
SPEAKEASY, Minuit, PAW, KUIP, CINT, Cling. ..

32/50

NHEP has a history of custom solutions for interactivity:
SPEAKEASY, Minuit, PAW, KUIP, CINT, Cling. ..

But the number of industry solutions is also vast.

Interactive mode languages |edit]

Interactive mode languages act as a kind of shell: expressions or statements can be entered one at a time, and the result of their evaluation is seen immediately. The interactive
mode is also termed a read—eval—print loop (REPL).

« APL « Erlang o Julia « Pike « Smalltalk (anywhere ina
« BASIC (some dialects) o Elixir {with iex) o Lua « PostScript Smalltalk environment)
« Clojure = « MUMPS (an ANSI standard « Prolog * S-Lang (with the S-Lang shell,
« Common Lisp o Fril general purpose language) « Python slsh)
« Dart (with Observatory or e GAUSS s Maple « PROSE » Speakeasy
Dartium's developer tools) « Groovy « Mathematica (Wolfram « R * Swift
+ ECMASCcript » Haskell (with the GHCi or language) « REBOL « Tcl (with the Tcl shell, tclsh)
« ActionScript Hugs interpreter) * MATLAB » Rexx = Unix shell
« ECMAScript for XML s IDL * ML « Ruby (with IRB) » Windows PowerShell (NET-
» JavaScript . « OCaml « Scala based CLI)
& JScript « Java (since version 9) « Perl « Scheme » Visual FoxPro

« Source * PHP 32/50

recent years, the industry has consolidated on Python

Python is currently leading every “most popular programming language” index.

PYPL Google Trends

PYPL Popularit of Programming Language . Y — e -

Python: 28.7% _ cic,.,

GitHut StackOverflow

GitHut 2.0 Tag
. 16.00% © python
f o ct
£ 1400% [\ ® javascript
g UA ® java
§ php
N Z E 1200%- °
= s H N\ ® objective-c
£ \ or
@ 1000%- A A, ® switt
H N \ e:
2 ruby
2 . 7O ® ruby
g soow\ My e W 8 wnet
3 \ \L- ® perl
— o e - - - - ¢ wA¢ NS @ assembly
5 oo, Ao A~
T M -
A A
g] N /
r) 4.00% J
2 "
g 200%
@
s R S S t———
: e
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

33/50

Including data analytics and especially machine learning

Correlated words in Google searches (Google Trends).

Relative Google search volume

100 A

80 -

60 -

40

201

0.

—— "Python analytics"
"R analytics"
- "Java analytics"

Hadoop
"Big Data"

.) \IVI\ A"
A AR A (AN

100 ~

80 -

60 -

40

20 A

—— "Python machine learning"
"R machine learning"
—=—= "Java machine learning"

'Kll\v\. AVIVEN PIVIP

Machine Learning era
started when Python
was already popular

INoenamms
“ LSS, FIR

ron Nven,

n Sout I '\ omes)

,_,/‘—\/\/w.'\r/v,/v\'

\’\,—v‘\'—\"’\/’ N

PN
T

2005 2007 2009

2011 2013 2015 2017 2019 2021

34/50

Python use has also been rising—steadily—in NHEP

year
'85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 '01 '03 '04 '06 '07 '09 '10 '12 '13 '15 '16 '18 '19 '21
16 A S S S S S S S 16
N —-- FORTRAN
- i\ —
Sl | ans |,
5 | \ """ Java
é i d —— Python
$ 121 i \ ——- Julia 12
2104 ; ! L 10
£ ! \
S]
© ! \
E 81 g L8
£ ; !
3 ! |
L2 611 i 6
= ‘
2 ! i
S 44] \)
c , . b
2Ll AN
2 24 . N S NG A s e -2
. RAVAREN N e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CHEP number
35 /50

Since before the return of machine learning

year
‘85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 'O1 '0O3 '04 '06 'O7 '09 '10 '12 '13 '15 '16 '18 '19 '21
121 —— (machinel- llearn|\bML\b) 12
5 === (neural|\bNN\b)
F e deepl- llearn
8 101 —.- (boosted]- Idecision\bBDT\b) 10
g
2 8- 8
£
I~
© -
£ A
c 61 / \ 6
E=] " / \
2 Y / \
L 1\ / \ A
E 44 ', \\ // \ ’\‘ 4
w— \ / \]
5] N/ \ A
- 1 \ / \ A
c 1 vV \ h \
(9] 1 \ \
Q24] \ H \ 2
[1 AY \
Q 1 \ ! \
1 S ! \
I AN H \
0 ——————
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CHEP number
35 /50

Lucas Taylor, Summary of Data Analysis Track, CHEP 2001 f"‘FI

Emerging Standard ?
Python as “Software Glue”

Clear trend towards Python 3
% Used by: ATLAS (Athena),CMS, DO, LHCb (Gaudi), SND,...z %
< Used by: Lizard/Anaphe, HippoDraw, JAS (Jython)... Note: PyROOT
< Architecturally, scripting is “just another service”
« ROOT is the exception to the “Python rule”
> CINT interpreter plays a central role
> Developers and users seem happy

Python is popular with developers...
+ Rapid prototyping; gluing together code
< (Almost) auto-generation of wrappers (SWIG)

..but acceptance by users not yet proven
% Another language to learn, syntax,...

introduced in
2004 (v4.00/04).

Early applications: gluing compiled modules toget

Stephan Lammel, Computing models of Jeff Templon, Python as an Integration
major HEP experiments: D@ and CDF, 1997 Language, SPAG-1998-02, 1998

D@ has made the decision to move all large
software projects to C++. Their framework
approach has a set of modules that execute se-
quentially, each having a specific task. The
glue that holds the individual software pack-
ages together will be an interpreted script sys-
tem. The main task of this framework is to
“guide” data between the various modules/packages
... prototype framework based on the Python
scripting language has been developed and is
ready for use.

Most of the code would be written in C or
C++, but the integration would be done through
Python. This enables the uninitiated to make
simple modifications to the analysis which were
perhaps not thought of by the authors; all the
neophyte needs to know is how the interfaces
work. On the other hand, it will force the code
authors to make the analysis subsystems inde-
pendent of each other (one of the big problems
with the current code), and will encourage rig-
orous testing of subunits.

37/50

Trends in code written by CMS users (in GitHub)

Cand C++ T

N
w
o

¢

¢ Python

® Jupyter Notebook
200{ @ Java
¢ Fortran
¢

Julia
150 4

100 A

Repositories created by CMS physicists per 90 days
v
o

..CMSSW . moved to GitHub, .

10\’1

’Ld\f) 10\’6

Repository creation date 38 /50

Na

&
o> P

\ ¢
o> 2™ P

v

Trends in code written by CMS users (in GitHub)

Cand C++

I
EN
L

Number of repos created per CMS user

Python
Jupyter Notebook +

=
N
L

Java

Fortran

g
=}
)

o
o
)

¢
¢
¢
¢
¢
¢ Julia

o o
H o
.

o
IN)
__.CMSSW moved to GitHub

Average new repositories per CMS physicist in 90 days

o
> ©
v

10{5

’LQXD‘ ’LQ\’(D

© A ® o
28> 2o 28> 2o 2

Repository creation date 38 /50

©

o

Trends in code written by CMS users (in GitHub)

160{ * Python numpy Number of repos with code matching search strings
" ¢ Python "matplotlib"
E 1401 ¢ Python "pandas"
[}
© @ Python "sklearn"
? 1201
5 ® Python "tensorflow"
E " "
§ 100 - @ Python "torch
§ ¢ Python "xgboost" +
2 80 o
Q. =3
o P +
2 0. 5
o g
© =
> [N
£ 40 & +
= =
© 201 8
2 .
0- ' il = .
S P Y NS ST\ N

Repository creation date
39/50

Trends in code written by CMS users (in GitHub)

160 1

CMS physicists' repositories with search hits

20 1

140

fury

N

o
!

100

80 1

60 1

40 -

¢ TFile" (C++)
¢ "TFile" (Python) Number of repos with code matching search strings
’ “import ROOT % .

"uproot"

% “numpy" §]
¥ "matplotlib® . ¥

"pandas"

.CMSSW. moved to GitHub:

""" NNA T
tael x..x‘i iéﬁ ; M#i§iii*¥* % i

-)(-
*
'}é

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Repository creation date

40/50

Survey responses from PyHEP 2020 attendees (N = 406)

"Which do you use regularly (> 10% of your work)?"

CorC++

Python

Matlab

Javascript or other browser-based (e.g. TypeScript, CoffeeScript)
Verilog, VHDL, or other hardware description language
R

Java or other JVM-based (e.g. Kotlin, Scala, Clojure)
Perl

PHP

C#

Julia

Go

Swift

Rust

Ruby

Haskell

Raw assembly or machine code

Other, not listed above -

"How often do you use Python relative to C or C++7"

More C++

Half-and-half

Neither

Always Python

More Python

"What are your main uses of Python?"

Physics analysis (other than machine learning)

Physics analysis with machine learning

Scripting routine tasks (e.g. job submission)

Interacting with collaboration software frameworks (e.g. configuation)
Non-physics data analysis

Computing infrastructure (e.g. GRID middleware, analyzing log files)
Developing general libraries for others to use

Demos for outreach and education

Developing specialized applications (e.g. dashboards)

) Other uses, not listed above

0

25 50 75 100 125 150
number of PYHEP 2020 survey respondents

175 0 50 100 150 200
number of PYHEP 2020 survey respondents

250

41/50

Part 3 conclusions: adoption of Python

NHEP adoption of Python started long before machine learning and columnar
analysis trends.

42/50

Part 3 conclusions: adoption of Python

NHEP adoption of Python started long before machine learning and columnar
analysis trends.

Interactive/fluid programming has always been a need, and has traditionally been
met by a variety of alternatives.

42/50

Part 3 conclusions: adoption of Python

NHEP adoption of Python started long before machine learning and columnar
analysis trends.

Interactive/fluid programming has always been a need, and has traditionally been
met by a variety of alternatives.

What's new is the consolidation on one language, Python, and an increase in how
much analysis logic can be “driven” from the interactive language.

42/50

Concluding conclusions

43/50

Concluding conclusions

Fortran

Assembly

1940 1950 1960 1970 1980 1990 2000 2010 2020

Adoption of
Fortran: immediate; for syntax and portability; no infrastructure to replace
C++: long overdue; for data structures; replaced infrastructure in a burst
Python: slowly overtook its alternatives; for interactivity; different niche
Julia? slowly mix in among the Python and C++ until it's all that's left?

44 /50

Backup

45 /50

Python ecosystem has had as much time to evolve as the LHC

letters of intent to first beams

LSt ¢ LS2 —pg-LS3
>

14 TeV
% % 7.5x nominal lumi
R2 | R3 | HL-LHC era
IIIIIIIIIIIIIIIIIIIIIIIIIIIII_IIIIIIIIIIIIIIIIIIIIIIIIIII)
1990 2000 2010 ..., 2020 2030 2040
T { SoikitHEP | %
‘ ' . RN <. 00
Python SciPy @i teieiideeecit % Uproot | % O
\Numerlchthon Matplotlib AstroPy ‘.‘\“ whkivard
s S NumPy Sy Amay o b [coffea RYED
T Pandas ":‘Qoffeaj - mplhep
HDF5 Teellmmrieaedei Jupyter; 7*=-===" . (O >
. SReCEL T £ 0 ’ imintit Scikit
RS ROOT columnar :: & : Py
________ databases Parquet UPI’OOt 3
~~~~~ Hadoop :  Spark  Farticle

~

Y

46 /50



Widespread familiarity with data science tools (PyHEP survey)

"Do you use these software packages?"

NumPy

Matplotlib
SciPy
Jupyter
Pandas
SciKit-Learn
IPython
TensorFlow

Keras
SciKit-Optimize
h5py (HDF5)
Seaborn
PyTorch
SciKit-Image
Numba

xarray
ROOT in C++
ROOT through PyROOT
Uproot
root-numpy
root-pandas
rooty
o p.y B No selection
Iminuit % s Don't know what it is
Awkward Array | mmm Never
particle Through dependencies only
Coffea Regularly
pyhf Al the time

0 50

number of PyHEP 2020 survey respondents

47/50



More CHEP history

year
'85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 'O1 '0O3 '04 '06 '07 '09 '10 '12 '13

'15 '16 '18 '19 '21
A ——=- (object[- Jorient|\bOOP?\b)
S10{ ¢ A ety 10
g i\ Y declarative
ke [ A ! ' —— columnar
9 ;o\ A
£ 87! 1 \ I‘| 8
o / \ ] \ /1
c 3 1 \ / \
= \ ! \ /I 1
S \ } \ / \ 4
T Vo ’ \ ] \ " 6
€ L [N \ ! | 1\
s F H \ H \ 1Y
H \ I \ 1 1 'y )
vy 1
- \ I} (S /
2 44 . Vo 1 \ '
© \ 7 Vo v \
= \ ‘il v !
G \J ./\' \\,’ (. \
g 3 AN Ve
o 27 A ! \ N\ ‘|,' \ 2
@ N / - \ y
o // \\ / — / / \
’ /) N \. / \
0 ’ N/ ~N ~. .~ ~- 7
1 2 3 4 5 6 7 8 9

T —— T T T T T T T T T T - 0
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CHEP number

48 /50



More CHEP history

year
'85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 'O1 '0O3 '04 '0O6 'O7 '09 '10 '12 '13 '15 '16 '18 '19 '21

—— \bROOT\b

B —— \bPROOF\b (case-sensitive)
£ 8 \b([RT]DataFrame|RDF)\b 8
é —=~ \b(Uproot|Coffea|Scikit-HEP)\b
9
=
=
261 6
£
S
©
€
b=
24 4
Y]
4
e
b
o
€ 24 2
[J]
=
[
o

0 T T T T T T T T

u T y T T T T T T T T T T T T 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CHEP number

49 /50



More CHEP history

year
'85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 '01 '03 '04 '06 '07 '09 '10 ‘12 ‘13 '15 '16 '18 '19 ‘21

164 \bCPUs?\b . 16
2 —— \b(GPUs?|CUDA)\b
§14_ —-- \b(FPGAs?|V?HDL|Verilog)\b i | 1
S —— \bTPUs?\b P :
T —_— ?
§ 121 \bRISCs?\b 12
(=)
£
§ 10 10
3 -~
£
5 81 8
2
L 61 6
=
G
o 4 4
c
[
Y
g 21 )

0k SEN TN (2D

—— e =0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CHEP number

50/50



