
History and Adoption of Programming Languages in NHEP

Jim Pivarski

Princeton University – IRIS-HEP

February 8, 2202

1 / 50

This talk is a historical overview of widely used programming languages in NHEP,
focusing on the motivations for each language’s adoption.

There have always been physicists at the edge, trying out new languages, but
most physicists only use one or two. The field as a whole changes slowly.

Thesis: (1) change motivated more by “pain points” than incremental benefits,

(2) though each of these transitions happened in a unique way.

2 / 50

This talk is a historical overview of widely used programming languages in NHEP,
focusing on the motivations for each language’s adoption.

There have always been physicists at the edge, trying out new languages, but
most physicists only use one or two. The field as a whole changes slowly.

Thesis: (1) change motivated more by “pain points” than incremental benefits,

(2) though each of these transitions happened in a unique way.

2 / 50

This talk is a historical overview of widely used programming languages in NHEP,
focusing on the motivations for each language’s adoption.

There have always been physicists at the edge, trying out new languages, but
most physicists only use one or two. The field as a whole changes slowly.

Thesis: (1) change motivated more by “pain points” than incremental benefits,

(2) though each of these transitions happened in a unique way.

2 / 50

This talk is a historical overview of widely used programming languages in NHEP,
focusing on the motivations for each language’s adoption.

There have always been physicists at the edge, trying out new languages, but
most physicists only use one or two. The field as a whole changes slowly.

Thesis: (1) change motivated more by “pain points” than incremental benefits,

(2) though each of these transitions happened in a unique way.

2 / 50

Three major transitions (so far)

1950 19601940 1970 1980 1990 2000 2010 2020

Assembly

Fortran

C++

Python

Adoption of

Fortran: immediate; for syntax and portability; no infrastructure to replace

C++: long overdue; for data structures; replaced infrastructure in a burst

Python: slowly overtook its alternatives; for interactivity; different niche

3 / 50

Part 1: Fortran

4 / 50

NHEP was an early adopter of digital computers

One of the very first applications was Monte Carlo (neutron transport).

5 / 50

And so was data analysis

Luis Alvarez’s group at the Bevatron: $2M bubble chamber, $0.2M IBM 650.

6 / 50

The problem was the same then as it is now

Unlabeled photos
come out of the
detector.

Labeling them
turns them into
quantities to
compute.

THE MORE
EVENTS THE
BETTER!!!

7 / 50

The problem was the same then as it is now

e⁺
e⁻

π⁺

μ⁺

K⁰₁

π⁻
 π⁻
(or K⁻)

π⁺

e⁺

K⁺

π⁻

Unlabeled photos
come out of the
detector.

Labeling them
turns them into
quantities to
compute.

THE MORE
EVENTS THE
BETTER!!!

7 / 50

The problem was the same then as it is now

e⁺
e⁻

π⁺

μ⁺

K⁰₁

π⁻
 π⁻
(or K⁻)

π⁺

e⁺

K⁺

π⁻

Unlabeled photos
come out of the
detector.

Labeling them
turns them into
quantities to
compute.

THE MORE
EVENTS THE
BETTER!!!

7 / 50

The problem was the same then as it is now

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1950 1960 1970 1980 1990 2000 2010 2020 2030

ev
en

ts
 p

er
 s

ec
on

d

UA1

CDF
(run 1)

DØ
(run 2)

ATLAS
& CMS
(run 1)

LHCb
(run 1) ATLAS

& CMS
(run 2)

ATLAS, CMS,
& LHCb (HL-LHC)

first fully
automated

8 / 50

Identifying tracks was beyond the capabilities of software

So they invented
special input devices
to streamline
data-entry.

9 / 50

Identifying tracks was beyond the capabilities of software

Madeleine (née Goldstein)
Isenberg, UCLA class of ’65

“We scanners would review each
frame of film, and per the brief
instructions we had been given,
looked for any ‘unusual activity.’

“The scanner had to use both
hands, a joystick in each, and turn
them clockwise or anti-clockwise,
to align a double crosshair cursor
at several sequential positions on
a track.”

10 / 50

Identifying tracks was beyond the capabilities of software

Madeleine (née Goldstein)
Isenberg, UCLA class of ’65

“A quick but firm tap on the foot-
pedal punched the coordinate val-
ues onto an IBM card that had
been fed into the keypunch ma-
chine.

“The precious stack of IBM cards
were passed to the physicists, who
would then process the data in
the existing IBM processors, us-
ing software that would calculate
the best fit for these coordinates,
and thereby mathematically simu-
late the curvature of the track.”

10 / 50

At first, the software was written in assembly (example from 1958)

11 / 50

At first, the software was written in assembly (example from 1958)

11 / 50

At first, the software was written in assembly (example from 1958)

11 / 50

At first, the software was written in assembly (example from 1958)

11 / 50

At first, the software was written in assembly (example from 1958)

11 / 50

At first, the software was written in assembly (example from 1958)

11 / 50

But it was quickly replaced by Fortran (SUMX from 1964)

12 / 50

CERN Courier special issues on computing

September 1967

Fortran
mentioned
3 times

March 1972

Fortran
mentioned
18 times

13 / 50

CERN Courier special issues on computing

September 1967

Fortran
mentioned
3 times

March 1972

Fortran
mentioned
18 times

13 / 50

Part 1 conclusions: adoption of Fortran

NHEP adopted Fortran for data analysis in the first years after its release in 1956.

“Algebra-like equations” (i.e. FORmula-TRANslation) was an obvious benefit.

Also portability: assembly programs only work on a single model of computer.

Why Fortran and not something else (e.g. ALGOL)?

It was IBM’s product, and most labs were buying IBM computers.

14 / 50

Part 1 conclusions: adoption of Fortran

NHEP adopted Fortran for data analysis in the first years after its release in 1956.

“Algebra-like equations” (i.e. FORmula-TRANslation) was an obvious benefit.

Also portability: assembly programs only work on a single model of computer.

Why Fortran and not something else (e.g. ALGOL)?

It was IBM’s product, and most labs were buying IBM computers.

14 / 50

Part 1 conclusions: adoption of Fortran

NHEP adopted Fortran for data analysis in the first years after its release in 1956.

“Algebra-like equations” (i.e. FORmula-TRANslation) was an obvious benefit.

Also portability: assembly programs only work on a single model of computer.

Why Fortran and not something else (e.g. ALGOL)?

It was IBM’s product, and most labs were buying IBM computers.

14 / 50

Part 1 conclusions: adoption of Fortran

NHEP adopted Fortran for data analysis in the first years after its release in 1956.

“Algebra-like equations” (i.e. FORmula-TRANslation) was an obvious benefit.

Also portability: assembly programs only work on a single model of computer.

Why Fortran and not something else (e.g. ALGOL)?

It was IBM’s product, and most labs were buying IBM computers.

14 / 50

Part 2: C++

15 / 50

Fortran lacked an essential feature for NHEP

R.K. Böck, Initiation
to Hydra (1974)

This wasn’t a part of Fortran until 1991.
Physicists created libraries for tree-like data.

16 / 50

Fortran lacked an essential feature for NHEP

R.K. Böck, Initiation
to Hydra (1974)

This wasn’t a part of Fortran until 1991.
Physicists created libraries for tree-like data.

16 / 50

Fortran lacked an essential feature for NHEP

P. Lebrun and A. Kreymer, High Level Language Memory
Management on Parallel Architectures (1989)

17 / 50

Fortran lacked an essential feature for NHEP

R.K. Böck and J. Zoll, Central Computers in the Analysis, CERN Courier No. 3, Vol. 12, March 1972

18 / 50

Beyond Fortran, data structures were a common language feature

COBOL (1959)

01 Point.
05 x pic 9(3).
05 y pic 9(3).

Simula (1962)

Class Point (x, y);
Integer x, y;
! define attributes...
! define methods...

End of Point;

PL/I (1964)

define structure
1 point,

2 x integer,
2 y integer;

ALGOL-68 (1968)

MODE POINT = STRUCT(
INT x,
INT y

);

Pascal (1970)

type Point = record
x, y: integer;

end;

C (1972)

typedef struct Point {
int x;
int y;

} Point;

19 / 50

Beyond Fortran, data structures were a common language feature

Paul Kunz, Physics Analysis Tools (1991)

In the first 15 years of CHEP (1985–2000),
similar suggestions were made for ALGOL,
PL/I, Pascal, Ada, Eiffel, Objective C,
Java, and of course C++.

20 / 50

Beyond Fortran, data structures were a common language feature

Paul Kunz, Physics Analysis Tools (1991)

In the first 15 years of CHEP (1985–2000),
similar suggestions were made for ALGOL,
PL/I, Pascal, Ada, Eiffel, Objective C,
Java, and of course C++.

20 / 50

Fortran did finally add data structures

Fortran-90 (1991)

type Point
integer :: x
integer :: y

end type Point

René Brun, Technologies, Collaborations and
Languages: 20 Years of HEP Computing (2012)

21 / 50

Fortran did finally add data structures

Fortran-90 (1991)

type Point
integer :: x
integer :: y

end type Point

René Brun, Technologies, Collaborations and
Languages: 20 Years of HEP Computing (2012)

21 / 50

So actually, NHEP needs:

1. rich data structures in the programming language,

2. serialization of those structures to/from disk,

3. read compatibility for old data versions (schema evolution),

4. mapping between persistent data and language’s structures
(which can be implemented with type-introspection).

HYDRA/ZEBRA/etc. approached these as a single problem.

In Java, (1–2) is a language problem, (3–4) is for databases.

Object databases focus on (4). . .

22 / 50

So actually, NHEP needs:

1. rich data structures in the programming language,

2. serialization of those structures to/from disk,

3. read compatibility for old data versions (schema evolution),

4. mapping between persistent data and language’s structures
(which can be implemented with type-introspection).

HYDRA/ZEBRA/etc. approached these as a single problem.

In Java, (1–2) is a language problem, (3–4) is for databases.

Object databases focus on (4). . .

22 / 50

So actually, NHEP needs:

1. rich data structures in the programming language,

2. serialization of those structures to/from disk,

3. read compatibility for old data versions (schema evolution),

4. mapping between persistent data and language’s structures
(which can be implemented with type-introspection).

HYDRA/ZEBRA/etc. approached these as a single problem.

In Java, (1–2) is a language problem, (3–4) is for databases.

Object databases focus on (4). . .

22 / 50

So actually, NHEP needs:

1. rich data structures in the programming language,

2. serialization of those structures to/from disk,

3. read compatibility for old data versions (schema evolution),

4. mapping between persistent data and language’s structures
(which can be implemented with type-introspection).

HYDRA/ZEBRA/etc. approached these as a single problem.

In Java, (1–2) is a language problem, (3–4) is for databases.

Object databases focus on (4). . .

22 / 50

So it wasn’t just a matter of adding another language to the mix.

The whole infrastructure, including I/O, had to change.

You only want to do that once!

23 / 50

Programming languages in CHEP title/abstract regex matches

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CHEP number

0 0

2 2

4 4

6 6

8 8

10 10

12 12

14 14

16 16
pe

rc
en

t o
f t

al
ks

 w
ith

 m
at

ch
in

g
tit

le
/a

bs
tra

ct

FORTRAN
C\+\+
Java
\bAda\b
Pascal

'85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 '01 '03 '04 '06 '07 '09 '10 '12 '13 '15 '16 '18 '19 '21
year

24 / 50

Data infrastructure in CHEP title/abstract regex matches

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CHEP number

0 0

2 2

4 4

6 6

8 8

pe
rc

en
t o

f t
al

ks
 w

ith
 m

at
ch

in
g

tit
le

/a
bs

tra
ct

\bROOT\b
\b(Objectivity|ORM|OODB(|MS))\b
\b(Hippoplotamus|HippoDraw)\b
\b(Java Analysis Studio|JAS|Jas4pp|FreeHEP)\b
\bLHC\+\+

'85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 '01 '03 '04 '06 '07 '09 '10 '12 '13 '15 '16 '18 '19 '21
year

25 / 50

Total number of talks (denominator): dips are small CHEPs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CHEP number

0 0

100 100

200 200

300 300

400 400

500 500

to
ta

l n
um

be
r o

f t
al

ks
'85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 '01 '03 '04 '06 '07 '09 '10 '12 '13 '15 '16 '18 '19 '21

year

26 / 50

ROOT I/O is custom, but was more advanced than alternatives

1970 1980 1990 2000 2010 2020

ZEBRA
(1983)

HYDRA
(1973)

ZBOOK
(1974)

BOS
(1975)

FORTRAN

ROOT

(1995)

CWN

(1989)

Objectivity

(1994‒2004)

XDR
(1987)

ASN.1
(1984)

ProtoBuf
(2001)

C++

MonetDB
(2002)

C-Store
(2005)

Avro
(2009)

Arrow
(2016)

Parquet
(2013)

Exchange
Formats

Databases

COLUMNAR!

COLUMNAR!

COLUMNAR!

COLUMNAR!

RNTuple

(2023)

27 / 50

Some advances had to be rediscovered outside NHEP

Dremel: Interactive Analysis of Web-Scale Datasets (Google, 2010)

Columnar, nested data was a ROOT feature 15 years earlier.

28 / 50

Part 2 conclusions: adoption of C++

NHEP adoption of C++ (or similar) was held back by the fact that we had
unique infrastructure.

It’s important to have data structures in the language, but also on disk.

Our solutions were both more advanced and less modular than others.

Many options considered in late 1990’s; C++ with ROOT I/O became dominant.

29 / 50

Part 2 conclusions: adoption of C++

NHEP adoption of C++ (or similar) was held back by the fact that we had
unique infrastructure.

It’s important to have data structures in the language, but also on disk.

Our solutions were both more advanced and less modular than others.

Many options considered in late 1990’s; C++ with ROOT I/O became dominant.

29 / 50

Part 2 conclusions: adoption of C++

NHEP adoption of C++ (or similar) was held back by the fact that we had
unique infrastructure.

It’s important to have data structures in the language, but also on disk.

Our solutions were both more advanced and less modular than others.

Many options considered in late 1990’s; C++ with ROOT I/O became dominant.

29 / 50

Part 2 conclusions: adoption of C++

NHEP adoption of C++ (or similar) was held back by the fact that we had
unique infrastructure.

It’s important to have data structures in the language, but also on disk.

Our solutions were both more advanced and less modular than others.

Many options considered in late 1990’s; C++ with ROOT I/O became dominant.

29 / 50

Part 3: Python

30 / 50

End-stage data analysis benefits from interactivity

31 / 50

NHEP has a history of custom solutions for interactivity:
SPEAKEASY, Minuit, PAW, KUIP, CINT, Cling. . .

But the number of industry solutions is also vast.

32 / 50

NHEP has a history of custom solutions for interactivity:
SPEAKEASY, Minuit, PAW, KUIP, CINT, Cling. . .

But the number of industry solutions is also vast.

32 / 50

In recent years, the industry has consolidated on Python

Python is currently leading every “most popular programming language” index.

Tiobe PYPL Google Trends

GitHut StackOverflow

33 / 50

Including data analytics and especially machine learning

Correlated words in Google searches (Google Trends).

Hadoop
"Big Data"

Data Science in R

...in Python

Machine Learning era
started when Python
was already popular

34 / 50

Python use has also been rising—steadily—in NHEP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CHEP number

0 0

2 2

4 4

6 6

8 8

10 10

12 12

14 14

16 16

p
e
rc

e
n
t

o
f

ta
lk

s
w

it
h
 m

a
tc

h
in

g
 t

it
le

/a
b

st
ra

ct

FORTRAN

C\+\+

Java

Python

Julia

'85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 '01 '03 '04 '06 '07 '09 '10 '12 '13 '15 '16 '18 '19 '21
year

35 / 50

Since before the return of machine learning

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CHEP number

0 0

2 2

4 4

6 6

8 8

10 10

12 12

pe
rc

en
t o

f t
al

ks
 w

ith
 m

at
ch

in
g

tit
le

/a
bs

tra
ct

(machine[-]learn|\bML\b)
(neural|\bNN\b)
deep[-]learn
(boosted[-]decision|\bBDT\b)

'85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 '01 '03 '04 '06 '07 '09 '10 '12 '13 '15 '16 '18 '19 '21
year

35 / 50

Lucas Taylor, Summary of Data Analysis Track, CHEP 2001

Note: PyROOT
introduced in
2004 (v4.00/04).

36 / 50

Early applications: gluing compiled modules together

Stephan Lammel, Computing models of
major HEP experiments: DØ and CDF, 1997

Jeff Templon, Python as an Integration
Language, SPAG-1998-02, 1998

37 / 50

Trends in code written by CMS users (in GitHub)

Number of repos created by all CMS users

38 / 50

Trends in code written by CMS users (in GitHub)

Number of repos created per CMS user

38 / 50

Trends in code written by CMS users (in GitHub)

Number of repos with code matching search strings

39 / 50

Trends in code written by CMS users (in GitHub)

Number of repos with code matching search strings

40 / 50

Survey responses from PyHEP 2020 attendees (N = 406)

41 / 50

Part 3 conclusions: adoption of Python

NHEP adoption of Python started long before machine learning and columnar
analysis trends.

Interactive/fluid programming has always been a need, and has traditionally been
met by a variety of alternatives.

What’s new is the consolidation on one language, Python, and an increase in how
much analysis logic can be “driven” from the interactive language.

42 / 50

Part 3 conclusions: adoption of Python

NHEP adoption of Python started long before machine learning and columnar
analysis trends.

Interactive/fluid programming has always been a need, and has traditionally been
met by a variety of alternatives.

What’s new is the consolidation on one language, Python, and an increase in how
much analysis logic can be “driven” from the interactive language.

42 / 50

Part 3 conclusions: adoption of Python

NHEP adoption of Python started long before machine learning and columnar
analysis trends.

Interactive/fluid programming has always been a need, and has traditionally been
met by a variety of alternatives.

What’s new is the consolidation on one language, Python, and an increase in how
much analysis logic can be “driven” from the interactive language.

42 / 50

Concluding conclusions

43 / 50

Concluding conclusions

1950 19601940 1970 1980 1990 2000 2010 2020

Assembly

Fortran

C++

Python

Adoption of

Fortran: immediate; for syntax and portability; no infrastructure to replace

C++: long overdue; for data structures; replaced infrastructure in a burst

Python: slowly overtook its alternatives; for interactivity; different niche

Julia? slowly mix in among the Python and C++ until it’s all that’s left?
44 / 50

Backup

45 / 50

Python ecosystem has had as much time to evolve as the LHC

Parquet

PyTorch

Jupyter

NumPy

SciPy

E
Y

E
T

S

1990 2000 2010 2020 2030 2040

LS3LS2

E
Y

E
T

SLS1letters of intent to first beams
14 TeV

7.5× nominal lumi

Python

NumericPython

HDF5

ROOT

Hadoop

columnar
databases

GP-GPUs
and CUDA

Pandas

AstroPy

Spark

TensorFlow

Keras

Uproot

Awkward
Array

future

Matplotlib

Scikit-HEP

Coffea

HL-LHC eraR1 R2 R3

&

46 / 50

Widespread familiarity with data science tools (PyHEP survey)

47 / 50

More CHEP history

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CHEP number

0 0

2 2

4 4

6 6

8 8

10 10

pe
rc

en
t o

f t
al

ks
 w

ith
 m

at
ch

in
g

tit
le

/a
bs

tra
ct

(object[-]orient|\bOOP?\b)
array
declarative
columnar

'85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 '01 '03 '04 '06 '07 '09 '10 '12 '13 '15 '16 '18 '19 '21
year

48 / 50

More CHEP history

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CHEP number

0 0

2 2

4 4

6 6

8 8

pe
rc

en
t o

f t
al

ks
 w

ith
 m

at
ch

in
g

tit
le

/a
bs

tra
ct

\bROOT\b
\bPROOF\b (case-sensitive)
\b([RT]DataFrame|RDF)\b
\b(Uproot|Coffea|Scikit-HEP)\b

'85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 '01 '03 '04 '06 '07 '09 '10 '12 '13 '15 '16 '18 '19 '21
year

49 / 50

More CHEP history

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CHEP number

0 0

2 2

4 4

6 6

8 8

10 10

12 12

14 14

16 16

pe
rc

en
t o

f t
al

ks
 w

ith
 m

at
ch

in
g

tit
le

/a
bs

tra
ct

\bCPUs?\b
\b(GPUs?|CUDA)\b
\b(FPGAs?|V?HDL|Verilog)\b
\bTPUs?\b
\bRISCs?\b

'85 '87 '89 '90 '91 '92 '94 '95 '97 '98 '00 '01 '03 '04 '06 '07 '09 '10 '12 '13 '15 '16 '18 '19 '21
year

50 / 50

