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Qutline

® Amplitudes
® what are we trying to analyze!
® Method of Maximum Likelihood
® what is the analysis strategy?
® Parallel Analysis with AmpTools

® how do we execute the analysis efficiently?
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Amplitudes



Amplitude ldeas

® Quantum mechanics Y X

e amplitude: complex valued function of A
particle kinematics

® indistinguishable amplitudes interfere (add
coherently)

® sum over distinguishable initial and final
states (add incoherently)

® Amplitude structure, examples p p

® kinematics: Y’ for conservation of angular
momentum

N A
® dynamics: Breit-Wigner function to J
describe lineshape of resonance
® What do we want to learn by fitting to data! X .
® magnitude (and phase) of certain amplitudes P x
® properties of resonances
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nx Polarized Photoproduction

® Example: GlueX polarized photon
beam allows one to study meson
production mechanisms

® GlueX kinematics: distribution
reaction plane with respect to
photon polarization plane
determines properties of exchange

e Ultimate goal:

® study the properties of X (spin,
parity, mass, ...)

® study the production mechanism
of X (interaction with the target)
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The Method of
Maximum Likelihood for
Parameter Estimation



Maximum Likelihood

® Amplitude analysis uses the method of maximum
likelihood for parameter estimation

—

® Model the intensity in X with parameters 6

—

P(x;0)

® Vary the free parameters to maximize the
probability of observing one's data set

Nevents
_)

c= || P@;0)
1=1

® No computation of y*: no "binning"
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Experiment Application

Step |: Shoot
particles at slits

& >
Probe
Beam of Particles

wavelength A

Goal: determine
from data the best

estimates
fordand D
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Physical System Under Study
Two Slits: width d, separation D

Step 2: For each particle record
location x where it was detected

Detector

Measures location X
for each arriving particle
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The Fit Procedure

® Construct model

A

I(x) = I (Sm;jZf<2L)> cos*(2Dmxz/AL)

A

S \M’\I\ ]

® Guess parameters d and D

/0 Construct PDF: ¢+ X
I(x) F
P(x) — fl’max I( p ———————— |
Lmin x) L R —=
® Compute likelihood =
N

o
|
—
~J
8
ANANNA.

1=1
one guess .
. . for I(x) |
® |terate to maximize £ or minimize —21In & $
(AmpTools uses MINUIT for this) |
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Putting It Together

® Construct the likelihood for a data set of N observed events -- minimize —21In &

e PuN P(x;0) = 17 (x; 0)n(x)

£(0) = - T Pexi; 0) p
;= / T(x; 0)n(x) dx

® AmpTools provides a framework to construct the model for the intensity under some
assumptions and manage issues like the detector and analysis acceptance #(X)

I(x) = 3 |Y s0,aVoadoa(x) Aso(x) = || aoa,y(x)
v=1

o 87

a: indistinguishable amplitudes; o: distinguishable coherent sums; y:amplitude factors
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Parallelization for Practical Problems

® To properly normalize the p.d.f. one needs /I(X; H)n(x) dx

® This must be numerically computed using a large set of phase space MC (no
physics model) and subjected to detector + analysis requirements

® for log likelihood minimization the integral can be replaced with the average
value of the integrand

[ 1@) da = R(f @) (Z(x;0) Zz x;: 0

insert RHS

/ term here
N

—2InL£(0) = —2 (Z InZ(x;; 0) — / Z(x; 0)n(x) dx) + ¢
1=1

sum over data sum over accepted MC

Need: large data and accepted MC set in RAM and the ability to compute sums over all events

I'IJ ' DEPARTMENT OF PHYSICS M. R. Shepherd
IIIIIIIIIIIII SITY 13 Computing Round Table
g;);locrg?n(;ft(ﬁ]rts and Sciences July ’2/ 2022




Goal: A Good Fit to Data
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Parallel Analysis with
Amplools



AmpTools Design Goals

® Separate physics from computing

® The“user” provides:
® an algorithm to unpack four-vectors from a file
® algorithms to compute various physics amplitudes from four-vectors
® a recipe for assembling the amplitudes into an intensity

® Amplools provides:

® a general framework that makes no assumptions about experiment or physics model
(other than quantum mechanics)

® a set of core libraries optimized for unbinned likelihood fitting and parallel processing

® MPI parallelization was always a part of design: knew eventual problem size would
exceed RAM on one machine

® GPU acceleration per process (multiple GPUs supported through MPI)

® modular code that can also be used for MC generation and displaying fit results
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What Drives Fit Speed

N
—2InL(0) = —2 Zlnl(xi;e) — /I(x; 0)n(x) dx | + ¢
1=1
sum over data sum over accepted MC

® Typical fit may need ©O(100) — ©(100,000) computations of —2 In # and a "large" data
set may have millions of data and MC events

: : - : 2
e cost of intensity calculation grows like Namphtudes

® Fit speed is dominated by two things:
® speed of computing —21InZ

® reducing the number of computations of —2 In Z by choice of algorithm used find
the minimum, convergence criteria, etc.

® large,independent sums lend themselves well to parallel processing
® partial sums over partial data sets computed on individual processes

® GPUs enable event-level parallelization for amplitude computations and other sums
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Generic Fitting Topology

Node |

CPU | =GPU |
CPU 2=—GPU 2

Node 2

no constraint on GPU/CPU
ratio or number of GPU or

P

CPU per node
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- CPU I =GPU |
1~ CPU 2=GPU 2

Lead Node

CPU

Node n

CPU | =GPU |

CPU 2=—GPU 2

Optional GPU
acceleration

Finely parallel:
typically one CUDA
thread per event or

amplitude

Coarsely parallel:

one MPI process per
GPU

Parameters and partial sums
exchanged over network layer

Minimizing
algorithm runs here
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P

Accelerating Code through Parallelization

Design challenge: make user-
provided code run fast

® minimize calls to user-written
functions

® add functionality like caching and
examples for how to use it

MPI: very little custom user code
needed

® coarse: one process per core

® prefer MPl (multi-node) over
multithread

GPU: compute intensive amplitudes
require user-provided CUDA kernel
to get maximum performance in
some cases
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_global__ void
GPUBreitWigner_kernel( GPU_AMP_PROTO, GDouble mass@, GDouble width@,

GDouble spin ){

int iEvent = GPU_THIS_EVENT;

code to compute Breit-Wigner

GDouble dV1[4] = GPU_P4(2);
GDouble dV2[4] = GPU_P4(3);

SQ( dvi[el + dv2[e] );
SQ( dvif[el );
SQ( dvz2[el );

GDouble mass
GDouble massl
GDouble mass?2

for( int i = 1; i <= 3; ++i ){

SQ( dvil[i] + dv2I[il );
SQ( dvilil );
SQ( dv2I[il );

mass -—
massl -
mass2 —

}

GDouble F

= barrierFactor( g, spin );

G_SQRT( mass );
G_SQRT( massl );
G_SQRT( mass2 );

mass
massl
mass?2

WCUComplex bwTop
WCUComplex bwBot

pcDevAmp[iEvent] = ( F * bwTop / bwBot );

amplitude for one event

{ G_SQRT( mass® x width® / 3.1416 ), 0 };
{ SQ( mass@ ) — SQ( mass ), —-1.0 * mass@ x widtho };

parallel invocation here,
called from core C++ fitting code

void
GPUBreitWigner_exec( dim3 dimGrid, dim3 dimBlock, GPU_AMP_PROTO,

{

by

GDouble mass, GDouble width, int spin )

GPUBreitWigner_kernel<<< dimGrid, dimBlock >>>
( GPU_AMP_ARGS, mass, width, spin );

compiled with NVIDIA’s compiler: nvcc,

linked into standard C/C++ code
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P

® Benchmark: J/y — ¢KK (from BESIII)
® |.3M data events and 2.4M MC events
® about 50 amplitudes and | 10 free parameters
® ~|00K function calls to convergence
® 40 days (!) with a single core

® Test platform: Indiana U. BigRed 200
(HPE Cray Shasta)

® 640 nodes: 2 x 64 core AMD

® 64 nodes: 4 x NVIDIA AI00
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Performance and Scaling

4096 processes
communicating simultaneously
across 32 nodes
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Performance Comments

® Likelihood calculation on large data sets lends itself well to parallelization

® MPI solutions are transparent to the user and exhibit excellent scaling up
to thousands of cores (with appropriate hardware)

® Assingle GPU with enough RAM typically provides at least 100x speed gain
® GPU notes

® usually limited by memory bandwidth

® hardware with large amounts of GPU RAM is preferred

® strong preference to do all computations in double precision

® some non-trival user development is required

® For a flexible framework, one size fits all optimization is challenging --
guidance to users is needed

® recent GlueX fit: factor of 4 speedup in better memory use and caching
complicated angle calculations which enabled a factor of 100 going to GPU
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History, Acknowledgements, and More Information

® AmpTools was part of 2007 NSF ""Physics at the Information Frontier" award
® initial development in collaboration with Ryan Mitchell at Indiana U.
e initial NVIDIA acceleration implemented in 2010 by Hrayr Matevosyan

® 2011: first public release of package v0.| corresponding with first publication that
used AmpTools "Amplitude analysis of the decays y., — na*z~ and
X1 — N’ ™" by the CLEO-c Collaboration

® Thanks to the Indiana University High Performance Computing group for tools
and guidance to optimize parallel computing

® BigRed200 is maintained by Indiana University Research Technologies

® AmpTools source code is here: https://github.com/mashephe/AmpTools

e the "Dalitz" tutorial distributed with the code is fully functional: it will
generate and fit pseudodata and can do so in parallel and on a GPU

® Have additional questions or need more information? mashephe@indiana.edu
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