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Outline

• Amplitudes

• what are we trying to analyze?

• Method of Maximum Likelihood

• what is the analysis strategy?

• Parallel Analysis with AmpTools

• how do we execute the analysis efficiently?
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Amplitude Ideas

• Quantum mechanics

• amplitude:  complex valued function of 
particle kinematics

• indistinguishable amplitudes interfere (add 
coherently)

• sum over distinguishable initial and final 
states (add incoherently)

• Amplitude structure, examples

• kinematics:    for conservation of angular 
momentum

• dynamics:  Breit-Wigner function to 
describe lineshape of resonance

• What do we want to learn by fitting to data?

• magnitude (and phase) of certain amplitudes

• properties of resonances
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 Polarized Photoproductionηπ

• Example:  GlueX polarized photon 
beam allows one to study meson 
production mechanisms

• GlueX kinematics: distribution 
reaction plane with respect to 
photon polarization plane 
determines properties of exchange

• Ultimate goal:

• study the properties of X (spin, 
parity, mass, ...)

• study the production mechanism 
of X (interaction with the target)
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exchange, the beam asymmetry is ⌃y = (�1)`, at high
energy. We concluded that the beam asymmetry along
the y axis is an important observable in the search for
exotic mesons with the GlueX experiment. Finally we
tested the sensitivity of ⌃y±⌧ , in which the decay angles
are binned within a opening angle of ⌧ around the y axis.
We showed that the model with and without the P -wave
are clearly distinguishable with an opening angle up to
⌧ = 10�. But for large opening angle ⌧ > 30�, the beam
asymmetry ⌃y±⌧ is no longer sensitive to the P -wave.

The illustration of the observables depends on the
model presented in Sect. II. The interested reader has the
possibility to change the model parameters and the kine-
matical variables in the online version of the model [58]
[59]. The online version also o↵ers the possibility to cal-
culate the moments at a specific t, instead of integrating
over t.
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Appendix A: Angular distributions

We consider the reaction

~�(�, p�) p(�1, pN ) ! ⇡
0(p⇡) ⌘(p⌘) p(�2, p

0
N ). (A1)

The photon beam is linearly polarized with an angle �
with respect to the reaction plane xz, the plane formed
by the beam, the target and the recoiling nucleon in
the center of mass of the ⌘⇡ system. As illustrated on
Fig. 7, the z axis is defined as the opposite direction of
the recoiling nucleon. The normal to the reaction plane
is y = p

0
N ⇥ p�/|p0

N ⇥ p� | and the x axis is given by
right-hand rule, x = y ⇥ z.5 With this choice of axes,
⌦ = (✓,�) are the angles of the ⌘. This convention for
the axes corresponds to the helicity frame. In Eq. (A1),

5 We use the boldface font to indicate spatial three-vectors.
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FIG. 7. Definition of the angles in the helicity frame. The re-
action plane xz, containing the momenta of the photon beam
(�), the nucleon target (p) and recoiling nucleon (p0), is in
blue. ✓ and � are the polar and azimuthal angles of the ⌘.
The polarization vector of the photon forms an angle � with
the reaction plane.

�, �1 and �2 are the helicities of the beam, target and
recoiling nucleon, respectively.

The Mandelstam variables are the total energy squared
s = (p� + pN )2, the momentum transferred between the
nucleons t = (pN � p

0
N )2, and the ⌘⇡

0 invariant mass
squared m

2
⌘⇡0 = (p⌘+p⇡)2. The dependence in the Man-

delstam variables s, t and m⌘⇡0 will be implicit thor-
ough the paper as we are mainly focusing on the angu-
lar dependence. The amplitude for the reaction (A1) is
A�;�1�2(⌦). The �-dependence of the intensity is en-
coded in the density matrix of the photon ⇢

� [45] and
the di↵erential cross section in photoproduction is, with
the flux FI = 2(s�m

2
N ),

d� = (2⇡)4�4(⌃ p)
1

FI

1

(2⇡)9
d3p⇡

2E⇡

d3p⌘

2E⌘

d3pN

2EN

1

2

⇥
X

�,�0

�1,�2

A�;�1�2(⌦)⇢
�
��0(�)A⇤

�0;�1�2
(⌦). (A2)

In the rest frame of ⌘⇡0, the measured intensity becomes

I(⌦,�) =
d�

dtdm⌘⇡0d⌦d�

= 

X

�,�0

�1,�2

A�;�1�2(⌦)⇢
�
��0(�)A⇤

�0;�1�2
(⌦). (A3)

We include all numerical factors in the phase space factor

Xγ

p p

t

⃗γp → ηπp′ 

(  helicity frame)ηπ
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 in the  amplitudea2(1320) → ηπ ℓϵ
m = D+

0
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 in the  amplitudea2(1320) → ηπ ℓϵ
m = D−

1
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The Method of  
Maximum Likelihood for  

Parameter Estimation
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Maximum Likelihood

• Amplitude analysis uses the method of maximum 
likelihood for parameter estimation

• Model the intensity in  with parameters 

• Vary the free parameters to maximize the 
probability of observing one's data set

• No computation of :  no "binning"

⃗x ⃗θ

χ2

9
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Experiment Application

10

D

d

d

Physical System Under Study
Two Slits: width d, separation D

Probe
Beam of Particles

wavelength λ

Detector
Measures location xi

for each arriving particle

x

LStep 1:  Shoot 
particles at slits

Step 2:  For each particle record 
location x where it was detected

Goal: determine 
from data the best 

estimates  
for d and D
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The Fit Procedure
• Construct model

• Guess parameters d and D

• Construct PDF:

• Compute likelihood

• Iterate to maximize  or minimize  
(AmpTools uses MINUIT for this)

ℒ −2 ln ℒ

11
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Putting It Together

• Construct the likelihood for a data set of N observed events -- minimize −2 ln ℒ

12

• AmpTools provides a framework to construct the model for the intensity under some 
assumptions and manage issues like the detector and analysis acceptance η(x)

 :  indistinguishable amplitudes;  :  distinguishable coherent sums;  : amplitude factorsα σ γ
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Parallelization for Practical Problems

• To properly normalize the p.d.f. one needs

13

• This must be numerically computed using a large set of phase space MC (no 
physics model) and subjected to detector + analysis requirements

• for log likelihood minimization the integral can be replaced with the average 
value of the integrand

insert RHS
term here

sum over data sum over accepted MC

Need:  large data and accepted MC set in RAM and the ability to compute sums over all events
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Goal:  A Good Fit to Data

14
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Parallel Analysis with 
AmpTools
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AmpTools Design Goals

• Separate physics from computing

• The “user” provides:

• an algorithm to unpack four-vectors from a file

• algorithms to compute various physics amplitudes from four-vectors

• a recipe for assembling the amplitudes into an intensity

• AmpTools provides:

• a general framework that makes no assumptions about experiment or physics model 
(other than quantum mechanics)

• a set of core libraries optimized for unbinned likelihood fitting and parallel processing

• MPI parallelization was always a part of design:  knew eventual problem size would 
exceed RAM on one machine

• GPU acceleration per process (multiple GPUs supported through MPI)

• modular code that can also be used for MC generation and displaying fit results

16
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What Drives Fit Speed

• Typical fit may need  computations of  and a "large" data 
set may have millions of data and MC events

• cost of intensity calculation grows like 

• Fit speed is dominated by two things:

• speed of computing 

• reducing the number of computations of  by choice of algorithm used find 
the minimum, convergence criteria, etc.

• Large, independent sums lend themselves well to parallel processing

• partial sums over partial data sets computed on individual processes

• GPUs enable event-level parallelization for amplitude computations and other sums

𝒪(100) − 𝒪(100,000) −2 ln ℒ

N2
amplitudes

−2 ln ℒ

−2 ln ℒ

17

sum over data sum over accepted MC
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Generic Fitting Topology

18
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Accelerating Code through Parallelization

• Design challenge:  make user-
provided code run fast

• minimize calls to user-written 
functions

• add functionality like caching and 
examples for how to use it

• MPI:  very little custom user code 
needed

• coarse:  one process per core

• prefer MPI (multi-node) over 
multithread

• GPU:  compute intensive amplitudes 
require user-provided CUDA kernel 
to get maximum performance in 
some cases

19

__global__ void 
GPUBreitWigner_kernel( GPU_AMP_PROTO, GDouble mass0, GDouble width0,  
                       GDouble spin ){ 

 int iEvent = GPU_THIS_EVENT; 

 GDouble dV1[4] = GPU_P4(2); 
 GDouble dV2[4] = GPU_P4(3); 
  
  GDouble mass  = SQ( dV1[0] + dV2[0] ); 
  GDouble mass1 = SQ( dV1[0] ); 
  GDouble mass2 = SQ( dV2[0] ); 
    
  for( int i = 1; i <= 3; ++i ){ 
     
    mass  -= SQ( dV1[i] + dV2[i] ); 
    mass1 -= SQ( dV1[i] ); 
    mass2 -= SQ( dV2[i] ); 
  } 
   
  GDouble F  = barrierFactor( q, spin ); 

  mass  = G_SQRT( mass  ); 
  mass1 = G_SQRT( mass1 ); 
  mass2 = G_SQRT( mass2 ); 

  WCUComplex bwTop = { G_SQRT( mass0 * width0 / 3.1416 ), 0 }; 
  WCUComplex bwBot = { SQ( mass0 ) - SQ( mass ), -1.0 * mass0 * width0 }; 

  pcDevAmp[iEvent] = ( F * bwTop / bwBot ); 
} 

void 
GPUBreitWigner_exec( dim3 dimGrid, dim3 dimBlock, GPU_AMP_PROTO,  
  GDouble mass, GDouble width, int spin ) 
{   
  GPUBreitWigner_kernel<<< dimGrid, dimBlock >>> 
    ( GPU_AMP_ARGS, mass, width, spin ); 
}

compiled with NVIDIA’s compiler: nvcc, 
linked into standard C/C++ code

code to compute Breit-Wigner 
amplitude for one event

parallel invocation here,
called from core C++ fitting code
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Performance and Scaling

• Benchmark:   (from BESIII)

• 1.3M data events and 2.4M MC events

• about 50 amplitudes and 110 free parameters

• ~100K function calls to convergence

• 40 days (!) with a single core

• Test platform:  Indiana U. BigRed 200  
(HPE Cray Shasta)

• 640 nodes:  2 x 64 core AMD

• 64 nodes:  4 x NVIDIA A100

J/ψ → ϕKK

20
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Thanks to Nils Hüsken for
these data
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Performance Comments

• Likelihood calculation on large data sets lends itself well to parallelization

• MPI solutions are transparent to the user and exhibit excellent scaling up 
to thousands of cores (with appropriate hardware)

• A single GPU with enough RAM typically provides at least 100x speed gain

• GPU notes

• usually limited by memory bandwidth

• hardware with large amounts of GPU RAM is preferred

• strong preference to do all computations in double precision

• some non-trival user development is required

• For a flexible framework, one size fits all optimization is challenging -- 
guidance to users is needed

• recent GlueX fit:   factor of 4 speedup in better memory use and caching 
complicated angle calculations which enabled a factor of 100 going to GPU

21
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History,  Acknowledgements, and More Information

• AmpTools was part of 2007 NSF ""Physics at the Information Frontier" award

• initial development in collaboration with Ryan Mitchell at Indiana U.

• initial NVIDIA acceleration implemented in 2010 by Hrayr Matevosyan

• 2011:  first public release of package v0.1 corresponding with first publication that 
used AmpTools "Amplitude analysis of the decays  and 

," by the CLEO-c Collaboration

• Thanks to the Indiana University High Performance Computing group for tools 
and guidance to optimize parallel computing

• BigRed200 is maintained by Indiana University Research Technologies

• AmpTools source code is here:  https://github.com/mashephe/AmpTools

• the "Dalitz" tutorial distributed with the code is fully functional:  it will 
generate and fit pseudodata and can do so in parallel and on a GPU

• Have additional questions or need more information?  mashephe@indiana.edu

χc1 → ηπ+π−

χc1 → η′ π+π−
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