Interplay of Higher-Twist And Nuclear Dynamics in PDF fits at large x

Alberto Accardi

and many thanks to my CTEQ-JLab collaborators: <u>Shujie Li</u>, <u>Ishara Fernando, X. Jing, S. Park</u> C.E. Keppel, W. Melnitchouk, P. Monaghan, J. Owens

Hall A Collaboration Meeting

10 Feb 2022

This work is in part supported by the DOE Office of Science

Outline

• Basics of QCD global analysis and PDF extraction

• "Impact" studies

- JLab 12 p/D (E10-...) \rightarrow valence quarks
- \circ STAR W & SeaQuest \rightarrow light antiquarks
- EIC \rightarrow all partons (almost...)

• Deuteron dynamics from Global QCD fits

- Simultaneous fit of PDFs and nuclear corrections
- CJ15 vs. AKP17 fits

• Interplay of Higher-Twists and Offshell Corrections

- Hidden theoretical biases uncovered
- Tagged measurements to the rescue
- Conclusions

References

Large-x fits with nuclear corrections:

- CJ15: Accardi et al., <u>PRD 93 (2016) 114017</u>
- **AKP**: Alekhin, Kulagin, Petti, <u>PRD 96 (2017) 054005</u>
- Accardi, talk at DNP 2020 / Fernando, talk at GHP 2021

QCD global analysis from protons to nuclei:

- Accardi, <u>PoS DIS2015 (2015) 001</u>
- Jimenez-Delgado, Melnitchouk, Owens, J.Phys.G40 (2013) 093102
- Ethier, Nocera, Ann. Rev. Nucl. Part. Sci. (2020) 70, 1-34

QCD global analysis and statistical methods:

• Kovarik, Nadolsky, Soper, <u>Rev. Mod. Phys. 92 (2020) 4, 045003</u>

Basics of QCD global analysis and PDF extraction

Factorization of Hard Scattering Processes

accardi@jlab.org

10 Feb 2022

Factorization of Hard Scattering Processes

Factorization of Hard Scattering Processes

Perturbative QCD factorization

Global QCD fits

- Fit PDF to a variety of hard scattering data
 - Hadron-hadron collisions
 - \rightarrow Jets
 - → Electro-weak boson production
 - Electron-proton DIS
 - Electron-Deuteron DIS
- >1000 data points
- 40+ years of experience,
 - "High-energy" fitters:
 - \rightarrow CTEQ-TEA, MMHT, NNPDF, HERAPDF
 - Lower-energy / nuclear focus:
 - → **CTEQ-JLab, AKP**, ABMP, JAM

Global QCD fits

The CJ15 PDFs

- Fitted with $\chi^2 = 1.04$ / datum
- Propagation of exp. errors
 - Hessian analysis
 - Correlated errors used if available
- "PDF error band" for $\Delta \chi^2 = 2.71$
 - $\circ \rightarrow$ 90% c.l. in a perfect world
 - Many alternative methods
- Theoretical systematics more difficult

The CJ15 d/u ratio

- **Theoretical uncertainties**: difficult to quantify, e.g.:
 - <u>Nuclear</u>: wave function choice
 - \circ Off-shell uncertainties are parametrized \rightarrow partly included in <u>Statistical</u> band
 - <u>Parametrization</u>: *d*-quark flexibility in extrapolation region
- Theoretical biases: even less obvious!
 - \circ We shall discuss those from HT and offshell implementation choices

"Impact studies"

accardi@jlab.org

10 Feb 2022

Valence quarks at JLab 12 (courtesy of W. Henry)

Valence quarks at JLab 12

- No tension with original CJ15 data set
 - \rightarrow Data compatible with global data set (not always the case...)
 - \rightarrow Otherwise, one can bring to light neglected systematic uncertainties

Valence quarks at JLab 12

- No tension with original CJ15 data set
 - \rightarrow Data compatible with global data set (not always the case...)
 - \rightarrow Otherwise, one can bring to light neglected systematic uncertainties
- Uncertainty reduction comparable to full JLab 6 data set

Light antiquarks: SeaQuest

- Low-energy DY from SeaQuest ($x \sim 0.15-0.4$)
 - p+d / p+p ratio
 - Explores kinematics beyond E866 reach

Xt

Light antiquarks: SeaQuest and STAR

- low-energy DY from SeaQuest ($x \sim 0.15-0.4$)
 - \circ p+d / p+p ratio, explores kinematics beyond E866 reach ($x \sim 0.02$ -0.3)
- Light antiquark ratio remains positive at all x values
 - Improved precision all over the x>0.1 range

accardi@jlab.org

• Thanks also to STAR W-bosons ($x \sim 0.05-0.25$)

S.Park, A.A. J.Owens

EIC impact \rightarrow <u>EIC yellow report</u>

• DIS at the EIC:

- Large x, Q2 coverage
- Weak and Neutral currents
- Positron and electron beams
- Flavor separation without deuterons (in principle)
- "Easy" proton and neutron tagging

A.A, X. Jing, S. Li

EIC impact \rightarrow <u>EIC yellow report</u>

• Fitting strategy

- Kinematics, uncertainties from simulations
- Central values from CJ15 + bootstrap

Deuteron dynamics from Global QCD fits

Large-x PDFs: interplay of observables

Deuteron 1: Fermi motion and binding

- Weak binding approximation:
 - Incoherent scattering from
 - not too fast individual nucleons
 - Neglects FSI

 $F_{2d}(x,Q^2) = \int \frac{dz}{z} dp_T^2 \mathcal{K}(z,p^2,\gamma) |\psi_{N/d}(|\vec{p}|)|^2 F_{2N}(x/z,Q^2,p^2)$ kinematic and "flux" factors Nucleon wave function $\rightarrow z = \frac{p \cdot q}{p_d \cdot q} \approx 1 + \frac{p_0 + \gamma p_z}{M} \left[p_0 = M + \varepsilon, \ \varepsilon = \varepsilon_d - \frac{\vec{p}^2}{2M} \right]$ momentum fraction of *d* carried by *N* $\rightarrow \text{ at finite } Q^2, \ \gamma = \sqrt{1 + 4x^2p^2/Q^2}$

quantifies how far the nucleon is from the light cone ($\gamma = 1$)

10 Feb 2022

Off-shell corrections in Deuteron

- Nucleons are bound in the deuteron:
 - $^{\circ}$ $p^2 < M^2$
 - Structure functions are deformed (but not too much if x not too large)

• Offshell expansion:

• parametrize first order coefficient

$$F_{2N}(x,Q^2,p^2) = F_{2N}^{\text{free}}(x,Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]$$

Free proton, neutron structure function

Parametrized and fitted (see the earlier triangle)

 \rightarrow CJ15, AKP

"offshell function"

When fitted, this effectively becomes a phenomenological "catch-all" term (see later)

Ο

CJ15 and AKP: free nucleons

- AKP has smaller *d/u* but bigger *n/p* ???
 - Not possible at Leading Twist
 - Large HT contributions to high-*x n/p* ratio

CJ15 and AKP17: off-shell function

Kulagin, Petti (e+A fits), NPA 765 (2006) 126

Alekhin + *KP* (*e*+*d global fits*) *PRD96* (2017) 054005

CJ15: PRD 93 (2016) 114017

• Different shape and size ??

Ongoing CJ + AKP benchmarking effort

- But many (<u>MANY</u>) differences
 - Extended d-quark (CJ15) vs. conventional (AKP, d/u-->0)
 - Fit real W asymetry vs. only decay lepton $W \rightarrow I + (n)$ asymmetry
 - Off-shell, HT choices, and their interplay

The most important, in our opinion!

accardi@jlab.org

Ο

. . .

Interplay of HT and offshell corrections

HT systematics

CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020

- HT assumptions
 - Additive vs. Multiplicative
 - \rightarrow In both cases, Q^2 -independent
 - Isospin symmetric or not

 $F_2(x,Q^2) = F_2^{LT}(x,Q^2) + \frac{H(x)}{Q^2}$ $F_2(x,Q^2) = F_2^{LT}(x,Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$

- Isospin and Q² assumptions are not "invariant"
 - e.g., a Q²-independent, isospin symmetric multiplicative HT generates an equivalent additive HT that depends on both

 $\widetilde{H}_{p,n}(x,Q^2) = C(x) F_{2p,n}^{LT}(x,Q^2)$

• Non-negligible large-x bias

- if using isospin-independent coefficients
 - \rightarrow Mult (CJ15) underestimates
 - \rightarrow Additive (AKP17) overestimates (H > 0)

$$\frac{n}{p} \xrightarrow[x \to 1]{} \begin{cases} \frac{1}{4} & \text{mult. } p = n \\ \frac{1}{4} + \frac{H}{u} & p \neq n \\ \frac{1}{4} + 3\frac{H}{u} & \text{add. } p = n \end{cases}$$

CJ fits - isospin symmetric HT

CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020

- Additive *n/p*
 - Larger than Mult *n*/*p*
 - Even if *d/u* is smaller
- Fitted offshell function compensates n/p bias
 - \circ *D*/*p* well fitted, indeed
- CJ15/AKP17 differences are reproduced!
 - And explained

* also includes full JLab 6 data; uses generic 2nd order polynomial δf

CJ fits - isospin breaking HT

CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020

• Bias removed !!!

- Small systematics remains
- n/p & d/u
 - Much closer to CJ15
- Small *δf* offshell correction
 - When averaged over *p* and *n*
 - Large cancellation is possible (but need A=3 data to confirm) (*Tropiano et al., PRC 2019*) (*Cocuzza et al., arXiv:2104.06946*)

* also includes full JLab 6 data; uses generic 2nd order polynomial δf

Tagged DIS to the rescue

Open questions

- Can we confirm the picture just painted? Is δf negative?
 - Need direct experimental sensitivity to δf
 - Tagged DIS experiments
- BONuS 6 data don't seem to disagree!
 - But may not be precise enough at large *x*

10 Feb 2022

Open questions

- Is the simple proposed factorization correct?
 - Or at least phenomenologically acceptable ?

 $F_{2N}(x, Q^2, p^2) = F_{2N}^{free}(x, Q^2) \left[1 + v \,\delta f(x) \right]$ $v = \frac{p^2 - M^2}{M^2}$

- Are FSI negligible?
 - Inclusive DIS only probes small off-shellness

More data, please!

- One can extract δf
 - Experiment by experiment
 - \circ or in a global QCD fit

 $\frac{F_{2N}}{F_{2N}^{free}} = 1 + v\,\delta f(x)$

• Need more tagged DIS data with

- FSI under control (small v, backward φ)
- Large lever arm and good resolution on v (or p_s)
- x>0.6 preferred to distinguish two cases

 $\delta f \, {\rm VS} \; x$

More data, please!

- At JLab:
 - BONuS 12, TDIS-n, BAND, LAD...
 - Proton and <u>neutron</u> tagging

• At the EIC

- Simulated Data (C.Weiss et al. JLab LDRD 2014)
 - \rightarrow Proton tagging + on-shell extrapolation method
- Fits by X.Jing and S.Li

The MARATHON parallelogram

- Can extend the CJ15 triangle to a parallelogram
 - → and verify if off-shell protons ~ off-shell neutrons !!

Summary

• Large- $x F_2(n)$ extraction in global fits:

- has (large) systematic bias due to the HT parameterization
- This bias also deforms the extracted offshell function
- Isospin-asymmetric HT parameterization is needed

• Need good quality tagged DIS data to

- Measure bound nucleon structure function in nuclei
- Confirm factorized formula for δf
- BONuS 12, TDIS-n, BAND, LAD... at JLab / Electron-Ion Collider

• Global QCD fit can incorporate tagged and inclusive data, and

- Combine the statistical power of proposed and future measurements
- Identify pulls against, or confirm compatibility with, other DIS, DY, jet data
- Measure δf , indeed, with highest precision and accuracy
 - \rightarrow And provide robust free $F_2(n)$ extraction

Thank you!

What can we learn from TRITIUM

Δ_3^q 0.10 $\delta q/q$ 0.05 $Q^2 = 10 \text{ GeV}^2$ 0.00-0.05 $- u_n$ $- d_v$ -0.10 0.2 0.4 0.6 0.2 0.4 0.6 0.8 0.8x \boldsymbol{x}

C. Cocuzza et. al., arXiv:2104.06946

FIG. 3. Ratio of off-shell to on-shell PDFs $\delta q/q$ (left) and the difference between proton valence quarks in ³He and ³H normalized to the sum, Δ_3^q (right), for valence u (red bands) and d (blue bands) quarks, at $Q^2 = 10 \text{ GeV}^2$.

FIG. 2. Results from the present JAM analysis including MARATHON data (red bands) for the super-ratio \mathcal{R} (top left), F_2^n/F_2^p ratio (top right), deuteron EMC ratio R(D) (bottom left), and the d/u ratio (bottom right), compared with those without the MARATHON data (yellow bands). The super-ratio \mathcal{R} is compared with the KP model input (gray band) used to extract the F_2^n/F_2^p ratio in [12]. The deuteron EMC ratio R(D) is also compared with that from CJ15 [5] (green band) and AKP17 [6] (light blue band).

Backup for kinematics

$$\begin{split} x^* &= \frac{Q^2}{2p_N^{\mu}q^{\mu}} \approx \frac{Q^2}{2M\nu(2-\alpha_s)} = \frac{x}{2-\alpha_s} \\ y^* &= \frac{p_N^{\mu}q_{\mu}}{p_N^{\mu}k_{\mu}} \approx y, \end{split}$$

$$M^{*2} = (M_d - E_s)^2 - \vec{p}_s^2.$$

Figure 11: Ratio of the extracted off-shell structure function F_{2n} at x'=0.55, $Q^2=2.8 \text{ GeV}^2$ to that at x'=0.25, $Q^2=1.8 \text{ GeV}^2$, divided by the ratio of free structure functions at those kinematic points. The error bars show the statistical uncertainty; the shaded band indicates the systematic uncertainty. [31]

The ratio between the $d(e,en_i)$ cross section at two different x' values, keeping the recoil nucleon kinematics the same, is:

$$\frac{d^4\sigma}{dx_1 dQ_1^2 d\bar{p}_s} \left/ \frac{d^4\sigma}{dx_2 dQ_2^2 d\bar{p}_s} = (K_1 / K_2) [F_2^*(x_1', \alpha_s, p_T, Q_1^2) / F_2^*(x_2', \alpha_s, p_T, Q_2^2)] \right.$$

Using $x_1 \approx 0.5 - 0.6$ and $x_2 \approx 0.3$ we will measure the ratio of effective structure functions:

$$[F_{2}^{*}(x_{1}',\alpha_{s},p_{T},Q_{1}^{2})/F_{2}^{*}(x_{2}',\alpha_{s},p_{T},Q_{2}^{2})] = \left(\frac{d^{4}\sigma}{dx_{1}dQ_{1}^{2}d\bar{p}_{s}}/K_{1}\right) \left/ \left(\frac{d^{4}\sigma}{dx_{2}dQ_{2}^{2}d\bar{p}_{s}}/K_{2}\right)\right|$$

Integrating over the recoil scattering angle in the range where the FSI is expected to be small, we will compare the measured ratio as a function of α , to the measured free proton structure function.

$$M^{*2} = (M_d - E_s)^2 - \vec{p}_s^2.$$

Are we done with (nuclear) corrections?

Theoretical choices —

	КР	AKP	CJ15	AKP-like
shadowing	yes	yes (which one?)	MST x<0.1	(same)
smearing	Paris	AV18	AV18 x>0.1	(same)
pi-cloud	yes	yes		
ТМС	GP O(Q4)?	GP O(Q4)??	GP approx.	(same)
нт	H (p=n ??)	H (p=n)	C (p=n)	H & C, p=n & p!=n
HT(x)	??	5 pt. spline	parametrized	parametrized
off-shell	O(p2-M2)	O(p2-M2)	O(p2-M2)	(same)
df(x)	factorized	polyn. 2nd/3rd	factorized + sum rule	polyn. 2nd/3rd
pi thresh.	yes	yes		

accardi@jlab.org

Are we done with (nuclear) corrections?

accardi@jlab.org