E12-17-004 GEn-RP Update

Hall A Collaboration Meeting
February 11, 2022

E12-17-004 Wiki Page

David Hamilton
(University of Glasgow)
Experimental Technique

Measure double-polarized $2H(\vec{e}, e'\vec{n})p$

- Final-state neutron $P_x/P_z \rightarrow G_{En}/G_{Mn}$
 (precess $P_z \rightarrow P_y$ in dipole magnetic field)

- Liquid D_2 Target 10 cm, 40 μA polarized electron beam (assume 80%), $L = 1.26 \times 10^{38}$ cm$^{-2}$s$^{-1}$

- BigBite electron spectrometer and SBS hadron spectrometer
 - apart from polarimeter, identical to G_{Mn}/G_{Mp} E12-09-019 setup

- SBS Neutron polarimeter: acceptance well matched to electron arm
 Dipole magnet, integrated field ~ 2 Tm
 Hadron calorimeter, high p & n efficiency, effective suppression soft background
 + passive steel analyzer
 + GEM charged-particle tracking systems
 + active CH analyzer and side scintillator planes

- This polarimeter detects high-momentum, small angle protons
 produced by np \rightarrow pn AND low-momentum large-angle protons produced by np \rightarrow np scattering
GEN-RP Physics / Experimental Approach

- E12-17-004 will measure GEn/GMn using two recoil pol. techniques at $Q^2 = \sim 4.5 \text{ (GeV/c)}^2$
 - “GMn” beam, beamline, target, BB
 - Beam: $\sim 4.4 \text{ GeV/c, } \sim 30 \mu A, P_b = \sim 80\%$
 - Target: 15 cm LD2 (unpolarized)
 - Scattered electron measured in BigBite
 - Charge-Exchange $np \rightarrow pn$ channel (primary goal)
 - Steel analyzer (passive)
 - GEM tracking + HCAL measure forward protons
 - Conventional $np \rightarrow np$ (secondary goal)
 - Plastic analyzer (active)
 - Large-angle recoil protons → Side detectors (GEM + hodoscope)
 - Forward neutron → HCAL

- Detector components also used in:
 - Wide-angle Charged Photoproduction (K_{LL})
 - SBS Inline GEM stack + Steel analyzer

- NOTE: HCAL trigger is required for BB+HCAL DAQ trigger
Analyzing Power for Elastic n-p Scattering

- A_y for n-p (or p-n) falling rapidly with increasing neutron momentum
- A_y for charge-exchange n-p large at sufficiently large t ($\theta_p \sim \text{few deg.}$)
- No apparent strong incident momentum dependence for charge-exchange A_y
- $\sigma_{np \rightarrow np}$ factor ~ 10 higher than $\sigma_{np \rightarrow pn}$
Addl. SBS Hardware for GEn-RP / E12-17-004

- **Active Analyzer (PR)**
 - segmented plastic scint. array
 - np recoil vertex identification

- **Recoil proton detectors (PR)**
 - 2 packages total:
 - One on SBS Left
 - One on SBS Right
 - Each package contains
 - 1x Hodoscope array
 - timing, coarse location
 - 2x UVa GEM planes
 - Tracking protons from CH analyzer

- **Inline GEMs (PR + ChEx)**
 - 2x INFN + 6x UVa GEMs
 - Charged particle veto (both)
 - forward proton tracking (ChEx)

- **Steel Analyzer (ChEx)**
Monte Carlo Simulation

- Realistic description of polarimeter components added to g4sbs
- Modified to include spin-dependent hadronic processes and precession
- Full quasi-elastic pseudo-data set simulated for expected luminosity
- Two-arm data analysis performed for both CE and PR polarimeter with realistic detector efficiencies and resolutions
- Analyzing power parametrizations based on Ladygin ($\times 0.5$) for PR and Dubna results for CE
- Extracted effective analyzing power (due to depolarization), overall efficiency, FOM and statistical uncertainty on polarization components and form factor ratio
GEn-RP (E12-17-004)

- GEn/GMn form factor measurement
 - Models with diff. assumptions of quark dynamics diverge rapidly as Q^2 rises.
 - Full program supports nuclear u and d quark decomposition
- E12-17-004 is a “Proof of Principle” measurement of GEn/GMn:
 - Validate new neutron polarimetry technique exploiting Charge Exchange channel (promises much better FoM at high Q^2!)
 - Cross checked using the “conventional” large angle np scattering polarimetry
- GEn-RP is allocated 5 PAC days to do single Q^2 point at 4.5(GeV/c)^2
 - Was designed to overlap with GMn setting
 - If all works, will return to PAC for full measurement

E12-17-004 (projected)
Update GEM status (EEL/125)

- 8 (of 10) X-Y GEM layers installed and being read out with VTP hardware
 - 6 layers in the production “Inline Stack”
 - 2 layers in one “Side Detector” Assem.
- Still in development
 - 2 UVa X-Y layers partially assembled
 - 2 INFN layers (J1 and J3) in TestLab
Hodoscopes Assembled in ESB

- HV and Signal cables labeled and spooled in ESB (right)
- One “Side Detector” under test in ESB (left)
 → 2nd Hodo layer also complete
Scintillator DAQ / Readout Hardware

- RP-GEn DAQ rack assembled in ESB
 → Testing with CODA3 HallA / SBS readout
- HV crate also production ready
 → (just to the right but not in frame…)
- Cable runs measured/confirmed between SBS and DAQ bunker
 → Should confirm layout with Jesse/Robin
- Power in SBS DAQ bunker is arranged
 → Require ~25A/120V (Jack Segal knows)
- DAQ folks:
 → DAQ fiber to the VXS crate for triggering
 → Need Ref-time for the v1190 TDC (&FADC)
 → Add ‘Side Detector’ trigger to TS (“Like”)
Upcoming Plans

- Move SBS RP-GEn detectors to the Hall for comm. during Pol He3 run in Fall 2022
 - Inline GEM layers installed in final location
 - Side Detector locations TBD
 » Beamline-side detector has interference
 » Perhaps locate both on floor beam-right of SBS?
 - No SBS rear field clamp
 - No Beamline shield wall

- Rough Timeline
 - Detectors to Hall: Apr/May
 - Hook-up and Test: May/June
Hardware Todo Lists

• DAQ rate questions
 → Significant VTP work has been done on EEL/125 GEM stack
 » Good progress, but more to do...
 » Load testing of VTPs in test setup a must
 → Need to assess potential data rate limitations in the Hall A DAQ system
 » “Max” rate @ 4.5 kHz with all GEM layers: ~3 GB/sec
 » Bandwidth, stability, sustainability?

• Magnetic fringe field check on SBS carriage
 → Existing shielding good to 50–60 G
 → Would like to re-measure in final config with rear field clamp installed
 (may not be possible)
 → Otherwise (re-)measure fields at planned SBS production current w/o clamp to validate model predictions

GEM Assembly Issue

• 79 APVs needed to complete assembly and readout GEM layers
 → Reuse idle INFN APVs?
 » Need connector adapter to be fabricated
 → 31 APVs damaged
 » Some fraction repairable
 » Maybe small fraction...
 → Buy/build new APV cards?
 » Availability and timeline?
 → APVs may be in contention with other projects
 » New SBS layers? Other projects?

• Complete GEM layer assembly and Cosmics testing
Software / Analyzer Todo

• The 4 UVa GEMs downstream of Steel Analyzer provide track for Charge-Exchange proton
 → Supported by kin. constraints from e- in BB and HCAL cluster
 → Assumption was that we would leverage existing GEM tracking infrastructure for BigBite in Podd
 » Still to be completed
 » Needs expert support, experts are stretched thin...

• Upstream GEMs are a used as charge-veto only for GEN-RP (relatively low bar)
 → Tracking required in this region for K_{LL}

• Hodoscope / Active analyzer fairly easy to implement and monitor with existing Podd
 → Kinematics and online “physics” monitoring modules/scripts still need to be developed
Staging and Run-plan Integration

- Hardware to move to the Hall
 - 1 DAQ rack (pre-assembled) + 1 HV crate + Cables (will be in a basket for transport)
 - Three sub-detectors frames (Inline GEM stack; 2x side-detector assemblies)

- GEn-RP detectors will be installed in SBS detector stack and verified in-situ prior to start of beam
 - This includes the all GEMs and side hodoscopes
 - Active analyzer will be cabled and checked out in-situ w/ cosmics as well
 - Passive (steel) analyzer will NOT be installed
 - Jesse's schedule indicates
 - Schedule for SBS/GEN-RP equipment moving into the Hall: Apr—May 2022
 - Schedule for SBS/GEN-RP hookup and prebeam tests: May—Jun 2022

- SBS GEMs (hardware and DAQ support) will be worked on parasitically during the Fall 2022 program
 - Plan to demonstrate:
 - Operational stability and tracking in 8 inline GEM layers + HCAL
 - Operational stability and tracking/spatial coincidence in side-detector assemblies
Outstanding Performance Questions

• **BB + SBS performance vs luminosity**
 → Absolute tracking efficiency on electron arm vs. luminosity (or beam current on LD2)
 » Proposals assumed ~40 uA on 10cm LD2
 →

• **BigBite electron arm performance metrics**
 → Electron trigger efficiency?
 » What fraction of incident electrons are we able to measure after trigger dilution due to gammas, pions, etc

• **HCAL performance metrics?**
 → HCAL trigger status / efficiency?

• **Rates / tracking performance in GEM layers**
 → Tracking less important for GEn-RP than for K_{LL}

• **DAQ rates limit check**
 » GMn: 5 BB GEM layers: 700 MB/sec @ 2.5 kHz trigger rate
 » GEn-RP: +12 GEM layers: ~1700 MB/sec @ 2.5 kHz trigger rate
Thank you