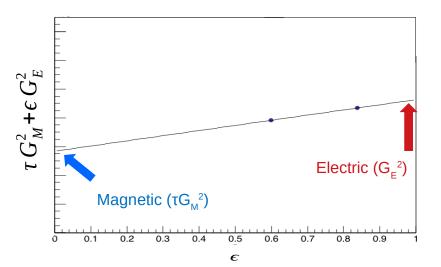
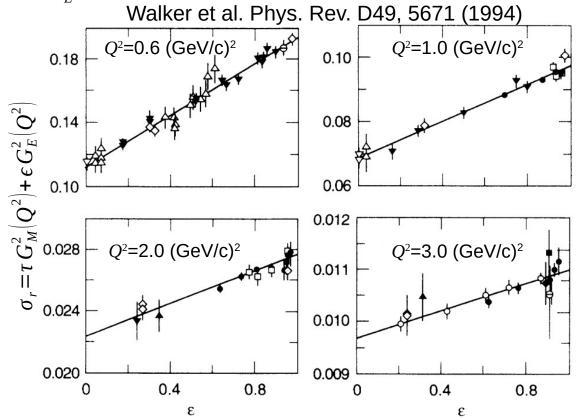

The Two-Photon Exchange Contribution in Elastic *e*-*n* Scattering

Sheren Alsalmi – King Saud University (PI) Eric Fuchey – University of Connecticut (Speaker - PI) Bogdan Wojteskhowski – Jefferson Lab (PI) On behalf of the nTPE collaboration


> Hall A collaboration meeting, Jefferson Lab February 11th, 2022

Rosenbluth technique: separate G_M^2 and G_E^2 based on the linear dependence in $\epsilon = [1+2(1+\tau)\tan^2\theta/2]^{-1}$

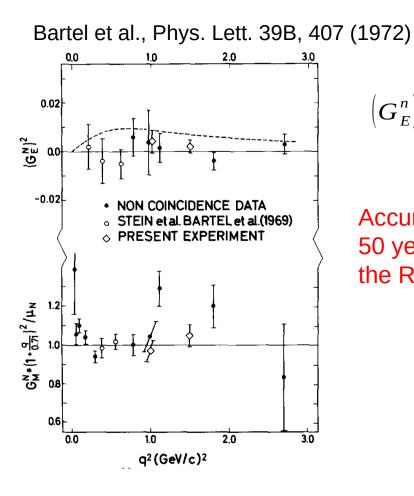

$$\sigma_r = (d\sigma/d\Omega) \cdot \epsilon (1+\tau)/\sigma_{Mott}$$

$$\tau G_M^2 (Q^2) + \epsilon G_E^2 (Q^2)$$

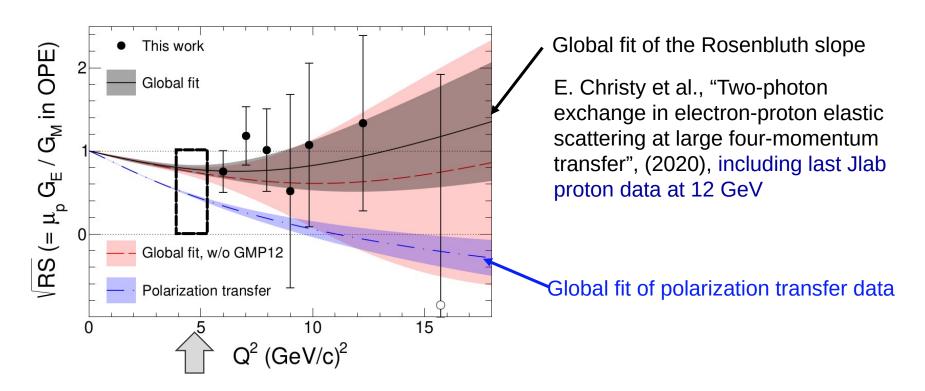
$$\sigma_T + \epsilon \sigma_L$$

Two or more measurements, same Q^2 , different *E* and θ (different ϵ)

02/11/2022

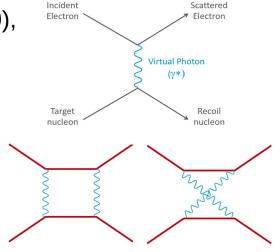

Technique extensively used to measure Rosenbluth slope for the proton and extract G_{F}^{p}

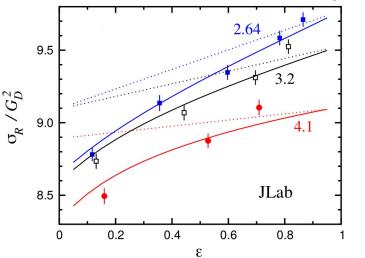
Linearity in ϵ well tested up to $Q^2 \leq 3 (\text{GeV/c})^2$


Rosenbluth for *e*-*n* scattering

Elastic *e*-*n* measurements at 1-2 (GeV/c)² (1960's and 70's)

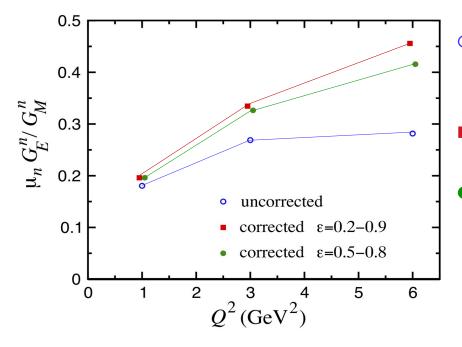
$$(G_E^n)^2 = S^n \times \tau (G_M^n)^2$$


Accuracy achieved in e-n measurements 50 years ago is not sufficient to measure the Rosenbluth slope


At $Q^2 = 4.5$ (GeV/c)², the Rosenbluth slope is $S^p = \sigma_L^p / \sigma_T^p \simeq 0.087 \pm 0.01$ Rosenbluth and polarization transfer methods have a *large* discrepancy Missing contribution, likely to be due to two-photon exchange (TPE)

Mechanism of *e*-*N* scattering (proton)

Until GEp-I at Jefferson Lab, Phys. Rev. Lett. 84, 1398 (2000), OPE accepted to be a sufficient approximation Investigation of two-photon exchange is mandatory Many experiments were dedicated to measure two-photon exchange (TPE), including Rosenbluth and $e^{\pm}-p$ scattering Linearity at mid ϵ does not exclude TPE



Blunden, Melnitchouk and Tjon, Phys. Rev. C72, 034612 (2005)

measurement on neutron will bring new insight to this physics 02/11/2022

- Two-Photon Exchange (TPE) contribution never measured for the neutron.
- Blunden, Melnitchouk and Tjon, Phys. Rev. C**72**, 034612 (2005) gave a prediction of the impact of the TPE correction on G_E^{n}/G_M^{n} using Rosenbluth separation method.

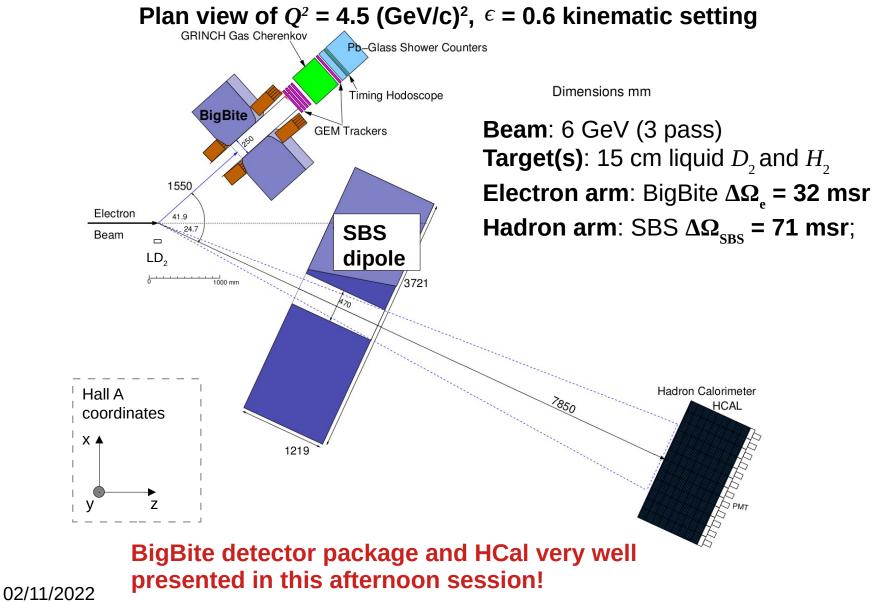
- Uncorrected $\mu_n G_E^{n/} G_M^{n}$ from Mergell Meissner Drechsel parameterization in Nucl. Phys. A596, 367 (1996)
 - Corrected with TPE contribution between two hypothetical measurements at e° = 0.2 and 0.9

Corrected with TPE contribution between two hypothetical measurements at $\tilde{e} = 0.5$ and 0.8

Goals:

Measure the Rosenbluth slope for elastic *e*-*n* scattering for the first time since

1972, with 10 times improved accuracy


Extract the two-photon exchange contribution on elastic *e*-*n* scattering

Means:

Use equipment and data from approved experiment E12-09-019 (GMn) in Hall A

Kin	Q ² (GeV/c) ²	E (GeV)	<i>E'</i> (GeV)	θ _{BB} (deg)	θ _{sbs} (deg)	e	Approved E12-09-019
SBS9	4.50	4.02	1.62	49.0	22.5	0.512	
SBS8	4.51	5.97	3.56	26.5	29.9	0.797	Approved E12-20-010

Experimental Setup in Hall A

Simultaneous elastic *e-n/e-p* measurement off deuterium : measure σ_{en}/σ_{en}

- Cancellation of nucleon momentum/binding effects in σ_{en}/σ_{ep} ratio;
- Other effects are partially cancelled and the $\sigma_{en}^{}/\sigma_{ep}^{}$ ratio
 - Nucleon charge exchange in final state interactions
 - inelastic *e*-*N* contamination

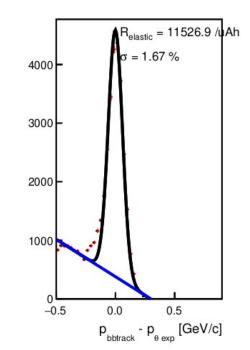
• Using $A = (\sigma_{en} / \sigma_{ep})_{\epsilon_1} / (\sigma_{en} / \sigma_{ep})_{\epsilon_2}$ the **experimental observable** and $B = (1 + \epsilon_2 S^p) / (1 + \epsilon_1 S^p)$, with $S^p = \sigma_L^p / \sigma_T^p \simeq 0.087 \pm 0.01$ we find $A = B \times (1 + \epsilon_1 S^n) / (1 + \epsilon_2 S^n) \approx B \times (1 + \Delta \epsilon S^n)$ $\Delta \epsilon = \epsilon_1 - \epsilon_2$ $S^n = \frac{A - B}{B\Delta \epsilon}$

Expected Result

Assuming the same proportions of TPE and G_E^n contributions to S^n as in Blunden, Phys. Rev. C**72**, 034612 (2005), but using G_E^n from the review, Perdrisat et al. Eur. Phys. J. A51, 19 (2015), we expect the nTPE contribution to be: 0.063 ± 0.010 (stat) ± 0.012 (syst) as per the proposal Additional GEn data points (i.e. GEn-RP @ Q² = 4.5 GeV²) may improve the systematics

Status

Data taken for *both* kinematics this winter:

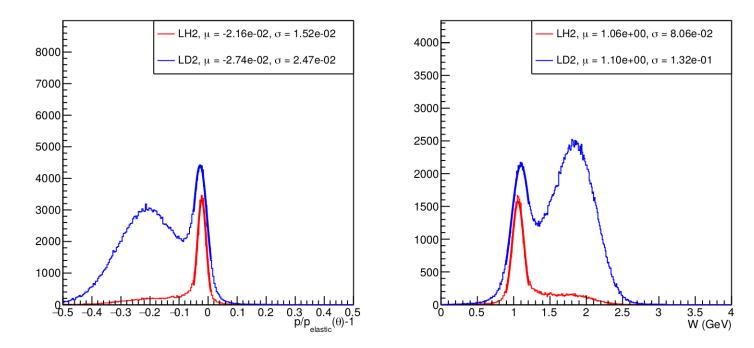

SBS8 from 1/21 to 1/31: estimated \sim 1.40 C collected on LD2 => est. 550k QE *e*-*n*

+ 0.87 C collected LH2, Dummy;

SBS9 from 2/01 to 2/07: estimated \sim 2.64 C collected on LD2 => est. 317k QE *e*-*n*

+ 0.81 C collected on LH2, Dummy;

(a larger proportion of LH2 data was collected for SBS8 for HCal systematic studies)



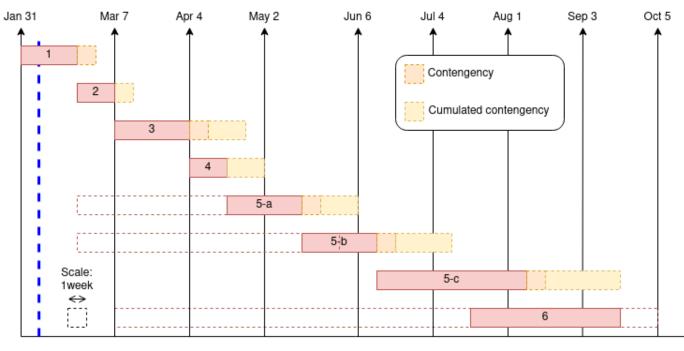
Elastic yield per unit of charge on LH2 for SBS8: => 11.5k/ uAh = 3200 *e-p*/mC on LH2 (Plot credit D. Hamilton)

Estimations (combining data and MC + 0.5 safety factor): ~400 QE *e-n* /mC on LD2 for SBS8 ~120 QE *e-n* /mC on LD2 for SBS9 (full analysis necessary for definitive numbers)

Analysis : first look

SBS8 (high ε) Elastic selection: * Ntrks>0 * E_{ps} >0.15 GeV * $1-(E_{ps}+E_{sH})/p_e < 0.25$ * LD2: $(x_{Hcal}-x_{expect_{Hcal}}-0.862)^2/0.236^2 + (y_{Hcal}-y_{expect_{Hcal}}-0.133)^2/0.294^2 < 1.0^2$ * LH2: $(x_{Hcal}-x_{expect_{Hcal}}-0.866)^2/0.149^2 + (y_{Hcal}-y_{expect_{Hcal}}-0.133)^2/0.0863^2 < 1.0^2$ => resolution in $W = \sqrt{(M_N^2 + 2M_N(E-E')-Q^2)}$ of the quasi-elastic peak: 0.13 GeV

Analysis : first look


SBS8 (high ε) Nucleon identification by reconstructed vs projected position in Hcal * Ntrks>0 LH2 LD2 * E_{PS}>0.15 GeV * 1-($E_{_{PS}}+E_{_{SH}})/p_{_{e}} < 0.3$ X_{HCAL}-X_{expect} (m), X_{HCAL}-X_{expect} (m) * 0.6 < W (GeV) < 1.2 * -0.06 < dpel < 0.06 **10⁴** 1.5 x: dispersive y: non-dispersive 10ⁱ $(X_{HCal} \equiv Y_{Hall})$ 0.5 0.5 10 -0.5 -0 10 -1. -0.5 0.5 -0.5 0 0.5 0 -1 1 -1 $y_{_{HCAL}}^{}-y_{_{expect}}^{}(m)$ $y_{HCAL}^{}-y_{expect}^{}$ (m)

Analysis : first look

SBS8 (high ε) Nucleon identification by reconstructed vs projected position in Hcal * Ntrks>0 * E_{PS}>0.15 GeV x: dispersive * $1-(E_{PS}+E_{SH})/p_{e} < 0.3$ y: non-dispersive * 0.6 < W (GeV) < 1.2 $(X_{HCal} \equiv Y_{Hall})$ * -0.06 < dpel < 0.06 LH2, μ = 8.66e-01, σ = 1.49e-01 LH2, μ = 1.33e-01, σ = 8.63e-02 5000 4500 - LD2, n: μ = 6.65e-02, σ = 2.25e-01 - LD2, μ = 1.33e-01, σ = 2.94e-01 LD2, p: μ = 8.62e-01, σ = 2.36e-01 4000 4000 3500 3000 3000 2500 2000 2000 1500F 1000 1000 500F 0<u>11</u> -2.5 0 -2 -0.5 -1.5 _1 -0.5 0 0.5 1.5 0 0.5 1 2 2.5 y_{HCAL}-y_{expect} (m) x_{HCAL}-x_{expect} (m)

Analysis TODO and tentative timeline

- 1) 1st pass Calibration: Optics, BBCal, HCal calibration coefficients for each setting (2-3 weeks)
- 2) 1st pass mass replay analysis: (2 weeks)
- 3) Refined calibration: Optics, BBCal, HCal refined calibration coefficients for each setting (3-4 weeks)
- 4) 2nd pass mass replay analysis: (2 weeks)
- 5) Physics analysis:
 - a) finalizing HCal response uniformity study and other systematics effects (3-4 weeks)
 - b) finalizing selection of quasi-elastics: (3-4 weeks)
- c) combination of the two kinematics; extraction of the experimental observables (6-8 weeks) 6) preparation of the publication; time estimate: (6-8 weeks doesn't account for the approval of the publication by the collaboration, etc) Note: first publication will probably not wait for GEn-RP results to be published; GEn-RP results will trigger a second analysis with another publication.

02/11/2022

Outlook

* First measurement of two-photon exchange on neutron!

* Data taken, analysis just started;

will setup dedicated analysis meeting with students (Sebastian, John B?, Zeke?)
=> stay tuned for more!

THANK YOU for everyone participating to the nTPE/GMn effort:

- Hall A engineering staff for the experiment design;
- Hall A tech staff for installation/setting changes

(and god knows they were many!);

- Hall A, physics division, accelerator and Jefferson lab leaderships for giving more time for both experiments to run;

- run coordinators for litterally giving one week of their life to coordinate all activities;

- subsystem experts for tirelessly maintaining all detectors in a functioning state;

- shift takers for spending countless hours monitoring data and being on the frontline for problem detection;

- spokespeople and lead coordinator for steering the whole experiment over the whole period (and stuffing the counting house with food);