Hall A Polarimetry – Future Plans

Dave Gaskell Jefferson Lab

Hall A Collaboration Meeting February 10-11, 2021

Outline

- Hall A Polarimetry
- Improvements to Hall A (and C) Compton Polarimeters (HIPPOL)
 - -Laser system
 - Electron detector
- Møller polarimeter
 - Tracking detectors
 - Collimator
 - -New target position

Hall A Polarimetry

Compton and Moller polarimeters used extensively in 6 GeV era

Compton improvements during 6 GeV:

- Laser system \rightarrow IR to green
- Photon detector → GSO crystal + threshold-less integrating DAQ

Møller improvements during 6 GeV:

• High field target magnet (3-4 T)

Improvements/modifications for 12 GeV

- 1. Compton chicane modifications (reduced vertical deflection)
- Moller detectors repositioned (closer to beamline)

3

 New, "cryogen-free" magnet for Møller target

Improvements to Hall A and C Polarimetry

- The polarimeters in both Halls A and C have steadily improved precision since the start of the JLab program
- Need for high precision primarily driven by PVES experiments (HAPPEX, PREX, CREX, Q-Weak)
- Precision of dP/P ~ 1% almost "routine"
- Future/ongoing polarimetry improvements driven by:
 - Unprecedented precision required by MOLLER and SOLID
 - Standardization between halls A and C
 - More reliable and robust operation

	Experiment	Device	dP/P
most "routine"	HAPPEX-III	Compton (photon)	0.94%
У	PREX-1	Compton (photon)	1.1%
		Møller	1.2%
n required by	Q-Weak	Compton (electron)	0.6%
		Møller	0.85%
n halls A and C	PREX-2	Møller	0.89%
operation	CREX	Compton	0.52%
		Møller	0.85%
0.44% combined! -	MOLLER		0.4%
	SOLID		0.4%

4

- High Precision Polarimetry capital project
- Ultimate goal: Compton polarimeters in Halls A and C with similar capabilities
 - Leverage available beamtime for systematic, functional tests
 - Use of same components allows for easier access to spares (fiber amplifiers, DAQ components, etc.)
- Scope:
 - Improve Hall C laser system to be similar to Hall A system (low gain cavity → high gain cavity) → components in hand
 - -Larger electron detector for Hall C \rightarrow needed for 11 GeV operation
 - -New electron detector in Hall A
 - Update Hall C electron detector DAQ (VETROC system) → components in hand

Main components:

- Narrow linewidth 1064 nm seed laser
- Fiber amplifier (>5 W)
- PPLN doubling crystal
- High gain Fabry-Perot cavity
- Polarization manipulation/monitoring optics

Properties:

- 1 W laser power from doubling system
- Mirror reflectivity > 99.98%
- Cavity finesse >=13,000
- Stored power 2-10 kW

HIPPOL: seed laser, fiber amplifier, high reflectivity mirrors for Hall C

Locking electronics:

Hall A still using same custom cavity locking electronics from late 90's

- \rightarrow Locking electronics live upstairs in CH, VME/EPICS interface in hall
- ightarrow CH electronics have already been replaced with spare modules
- → VME modules in hall have had component failures in the last few years repaired by Spectrometer Support

For reliable long term operation, need spares/backup system

- → Hall C used commercial, FPGA-based locking system (Digilock) may not be fast enough for high gain cavity
- ightarrow Tests with Hall A cavity planned

Laser frequency doubling system

- \rightarrow Existing system uses separate fiber amplifier + PPLN crystal
- \rightarrow Replacing PPLN crystal requires significant alignment + downtime
- → Combined-function amplifier-doubler will be tested for compatibility with high finesse cavity

Locking electronics:

Hall A still using same custom cavity locking electronics from late 90's

- \rightarrow Locking electronics live upstairs in CH, VME/EPICS interface in hall
- ightarrow CH electronics have already been replaced with spare modules
- → VME modules in hall have had component failures in the last few years repaired by Spectrometer Support

For reliable long term operation, need spares/backup system

- → Hall C used commercial, FPGA-based locking system (Digilock) may not be fast enough for high gain cavity
- ightarrow Tests with Hall A cavity planned

Compton Electron Detector

Existing electron detectors

Hall A: silicon strip

- \rightarrow 4.6 cm vertical coverage
- ightarrow 192 strips, 240 μm pitch
- → Suffers from small signal size/excess noise leading to low efficiency

Hall C: diamond strips

- ightarrow 2 cm vertical coverage
- ightarrow 96 strips, 200 μm pitch
- ightarrow Undersized for ideal 11 GeV operation
- ightarrow Efficiency ok, but could be improved

Needs to cover from Compton edge to at least zero crossing, asymmetry minimum preferred

Need ~ 30 bins/strips between endpoint and zerocrossing to reliably extract polarization

A pitch of 245 μm will allow good performance down to 4.4 GeV in both Hall A and C

Hall A \rightarrow 5.75 cm Hall C \rightarrow > 2 cm Hall C \rightarrow > 2 cm Hall C \rightarrow > 2 cm

February 10-11, 2022

Hall A Collaboration Meeting

Electron Detector

- Existing Hall A/C detectors will be replaced with new diamond strip detectors
 - In parallel, U. Manitoba working on HVMAPS electron detector
- Hall C diamond detector worked for Q-Weak but suffered from non-uniform, modest efficiency
 - Analogue pulses carried out of vacuum via flex cables
 - QWAD amplifier-discriminators just outside vacuum can
- New diamond detectors will use ASICS on detector board in place of QWADS outside of vacuum can
- Candidate ASICs under consideration
 - SAMPA (ALICE)
 - SALT (LHCb)
 - Calypso (Ohio State)
- Test diamond substrates procured for tests with above
 - JLab Fast Electronics has designed SALT/SAMPA test boards, Ohio State will design/fabricate Calypso boards

<u>Status</u>

• Test diamond planes obtained from II-VI, sent to Ohio State for characterization

11

 High leakage currents (µA instead of pA) → boards will be replaced

Existing Hall A Møller detector system has no information on event distribution at detectors

- \rightarrow Event distribution can provide information about spectrometer optics \rightarrow check Monte Carlo (analyzing power)
- \rightarrow Additional tracking detector would help reduce systematic error due to acceptance/optics
- → Studies underway to see how tracking detector could help studies of radiative effects and Levchuk effect correction

GEMs will be used to provide this tracking information

→ Funded through MOLLER NSF midscale project (detectors) and DOE project (mechanical supports)

Detector design nearing completion

- \rightarrow Preliminary design review in January
- → Desirable to install early to allow use/checkout prior to MOLLER run

Møller GEM Design

Møller polarimeter GEM detector included in Preliminary Design Review (Jan. 12-14, 2022) held for several MOLLER detectors

13"

st-ret/iew:

Committee recommended adding a Brd GEM plane
(current plan has onl 2)
Final location, nurger of planes under discussion

Other proposed char es/updates

- Reduce height of a tive area for better integration with beamline
- Optimize connected s and cable uting
- Start working with to determine plan for detector supports 6.5"
 8.5"
 1"

Moller Polarimeter GEM preliminary design, Nilanga Liyanage (Uva)

- At 11 GeV, Møller quads not strong enough to totally eliminate impact of so-called Levchuk effect
- → Correction for Levchuk effect model-dependent and tightly coupled with detailed understanding of acceptance

Can be mitigated by shifting the Møller target/magnet upstream by ~30 cm

Target magnet shift included in MOLLER beamline design → also being pursued in the near-term if time and resources allow

11 GeV -- Move Target 30cm Upstream Q3 Scan :: 4.5cm Detector [Azz Bars 0.5% Change from 0.775369 Azz]

Eric King – Temple University

New Collimator for Moller detectors

In addition to target position shift, changes to acceptance also required to mitigate Levchuk effect

- Limiting vertical acceptance to 5 cm essentially eliminates Levchuk correction
- Full vertical acceptance of Møller detectors is 30 cm (4 rows of PMTs) – reduced in PREX/CREX by turning off rows of PMTs, but minimum coverage is ~7.5 cm \rightarrow significant Levchuk corrections remains

Rather than fabricating new (smaller) detectors and possibly impacting operation at lower energy, opted to design a small removable collimator

- Tungsten collimator will mount on detector opening (using existing bolts)
- Bottom detectors can be turned off, so no need to extend all the way to the bottom of the detector

Summary

- Several ongoing/planned improvements to Hall A (and C) Compton polarimeters
 - -HIPPOL capital project
 - Hall C Compton laser
 - Hall C electron detector DAQ
 - Hall A and C electron detectors
 - -Additional improvements being pursued for Compton laser system
 - New locking electronics
 - Combined function amplifier and frequency doubling system
 - Fast counting DAQ also under development → VETROC (electron detector, tested during CREX) and JLab FADC (photon detector)
- Hall A Møller
 - -New tracking detectors to better constrain analyzing power and corrections
 - Target shift ~30 cm upstream
 - -Acceptance defining collimator

Electron Detector DAQ

Electron detector readout requires processing "tracks" from multiple planes at high rates (order 100s of kHz)

- Hall A has transitioned to using the JLab VETROC modules (first use with beam during CREX)
- Hall C was using CAEN V1495 during Q-Weak
 - V1495 worked well, but can only handle full tracks at very limited rates
 - Required complicated pseudo-tracking based trigger with operation in scaler mode
- Hall C also moving to VETROC–based readout
 - Standardization across Hall A and C
 - Higher rate capabilities more flexibility

18

PCB drawing

VETROC

HIPPOL project:

- → Replace existing electron detectors in Halls A and C with new diamond strip detectors
- → Optimize size and granularity for operation at 11 GeV while retaining low energy capabilities (perhaps slightly reduced precision at lowest energy)
- → Improve on Hall C design with different approach to electronics amplify signal on detector plane (rather than outside vacuum can)

In parallel, U. Manitoba developing HVMAPS-based detector system (Hall A A only)

ightarrow Prototyping and testing underway

