SBS Hadron Calorimeter Commissioning Results

Scott Barcus on behalf of the HCal Working Group

February 11th 2022

Jefferson Lab

HCal Overview

- Design based on COMPASS HCAL1 (Vlasov *et al.* 2006).
- Segmented calorimeter designed to detect multiple GeV protons and neutrons.
 - 288 PMT modules (24×12).
 - LED fiber optics system.
- SBS dipole magnet separates scattered hadrons by charge.
- High time resolution (0.5 ns).
- High position resolution (3-4 cm at 8 GeV).
- Neutron to proton detection efficiency ratio 0.985 at 8 GeV.
- Energy resolution $\approx 30\%$.

Scott Barcus

HCal Interior (288 Individual PMT Modules)

- 40 layers of iron absorbers alternate with 40 layers of scintillator.
- Iron causes hadrons to shower.
- Scintillator layers sample energy.
- Photons pass through a wavelength shifter increasing detection efficiency.
- Custom light guides transport photons to PMTs.
 - 192 12 stage 2" Photonis XP2262 PMTs.
 - 96 8 stage 2" Photonis XP2282 PMTs.

G_M^n Experiment

- G_M^n experiment to extract neutron magnetic form factor.
 - Quasielastic deuterium cross section ratios d(e,e'n)p/d(e,e'p)n. (Puckett 2019; Quinn, Wojtsekhowski, Gilman, *et al.* 2008)
- HCal detected scattered hadrons.
- BigBite spectrometer detected scattered electrons.

$G_{\mathcal{M}}^{n}$ Experiment: Science Results

- Flavor decomposition of G^n_M and $G^p_M \to$ flavor form factors.
- Nucleon form factors constrain GPDs (first moments of H and E).
- High Q² Gⁿ_M measurements test lattice QCD, pQCD, VMD models, and effective field theories. (Puckett 2019; Quinn, Wojtsekhowski, Gilman, et al. 2008)
- Completed Q² = 3, 4.5, 7.5, 10 and 13.6 GeV²

Data Acquisition System

- Two VXS crates.
- 18 16-channel fADC250 flash ADCs measure energy.
 - Takes numerous samples (250 MHz, 4ns).
 - Time over threshold measurements extract timing.
- 5 64-channel F1TDCs for timing.
- VXS Trigger Processors (VTPs) contain FPGAs to form triggers (future use).
- Triggers:
 - Scintillator paddle (cosmics).
 - Summing module trigger.
 - LED pulser trigger.
 - BigBite coincidence trigger.

Scott Barcus

Jefferson Lab

Proton Sweep

- Using a LH₂ target sweep the magnetic field to illuminate all of HCal with elastic protons.
- These elastics are well understood and can be used for calibrations and detector characterization.

Scott Barcus

Geant4 Simulations Position Resolution

- Geant4 simulations model all detectors, the target, and magnets.
 - Full optical photon processes (light yields and backgrounds).
- Require excellent spatial resolution for high Q^2 SBS experiments.
 - $-P_N = 8 \text{ GeV}$: X (horizontal) resolution = 3.2 cm, Y (vertical) resolution = 3.8 cm.
 - $P_N = 2.5$ GeV: X and Y resolution = 6-7 cm.

Analte Basevaluan Carlos Corneio.

Elastic Hadrons on HCal

- Using track reconstruction from GEMs and BB project the hadron path onto HCal.
 - Assume no SBS field \rightarrow proton measured position is higher than expected.
 - Find cluster X,Y position and subtract off the expected position.
 - See elastic proton spots from hydrogen.

Elastic Hadrons on HCal

- Using track reconstruction from GEMs and BB project the hadron path onto HCal.
 - Assume no SBS field \rightarrow proton measured position is higher than expected.
 - Find cluster X,Y position and subtract off the expected position.
 - See elastic proton spots from hydrogen.
- May have replayed SBS8 before optics were well calibrated.

• SBS4 X-direction (vertical) position resolution \approx 8.2 cm.

```
- E_{beam} \approx 3.7 GeV and Q^2 \approx 3 GeV^2.
```


• SBS4 Y-direction (horizontal) position resolution \approx 7.1 cm.

```
- E_{beam} \approx 6 GeV and Q^2 \approx 4.5 GeV^2.
```


Hadron X-Position LD₂

- SBS4 HCal X-position expected vs. measured with zero SBS field.
 - Proton peak deflected upwards \approx 110 cm on HCal.
 - See clear neutron peak below the proton peak.

Vert diff vs Horiz diff : HCAL

Scott Barcus

Hadron X-Position LD₂

- SBS4 HCal X-position expected vs. measured with zero SBS field.
 - Proton peak deflected upwards ${\approx}110~\text{cm}$ on HCal.
 - See clear neutron peak below the proton peak.

Vertical position - projected vertical position : HCAL

Geant4 Simulations Detection Efficiency

- HCal requires comparable detection efficiency for protons and neutrons.
 - Ratio of simulated neutron detection efficiency to proton efficiency.
 - Ratio = 0.985 at 7-8 GeV. Drops to \approx 0.966 between 2.5-4 GeV.

Image from Juan Carlos Cornejo. Scott Barcus

Jefferson Lab

Detection Efficiency Uniformity

- Important to detect protons and neutrons with the same efficiency.
 - If detection efficiency differs the p/n cross section ratio becomes less accurate.
- Proton elastic spot separated from neutrons by SBS magnet.
 - Need the detection efficiency at the proton spot and neutron spots to be the same.
- Using elastic electron information from BB and GEMs calculate expected hadron energy.
 - Measured HCal cluster energy for elastic hadrons represents the sampling fraction of the expected energy detected.
 - This sampling fraction should be uniform across the surface of HCal.
 - Predicted by Geant4 to be on the order of \approx 7.5%.

• SBS4: $E_{beam} \approx 3.7 \, GeV$ and $Q^2 \approx 3 \, GeV^2$. Sampling fraction $\approx 4.76\%$.

• SBS8: $E_{beam} \approx 6 GeV$ and $Q^2 \approx 4.5 GeV^2$. Sampling fraction $\approx 3.63\%$.

Image from Sebastian Seeds.

• SBS4: $E_{beam} \approx 3.7 GeV$ and $Q^2 \approx 3 GeV^2$. Sampling fraction by row.

• SBS4: $E_{beam} \approx 3.7 GeV$ and $Q^2 \approx 3 GeV^2$. Sampling fraction by column.

• SBS8: $E_{beam} \approx 6 GeV$ and $Q^2 \approx 4.5 GeV^2$. Sampling fraction by row.

• SBS8: $E_{beam} \approx 6 GeV$ and $Q^2 \approx 4.5 GeV^2$. Sampling fraction by column.

• Project individual rows and columns and fit sampling fractions for SBS4/8.

• X-direction (vertical) uniformity. Sampling fraction fit by row.

• Y-direction (horizontal) uniformity. Sampling fraction fit by column.

Preliminary Timing Resolution

- Isolate elastic proton events and find the HCal TDC time of the highest energy PMT in the largest energy cluster for each event.
- This time has significant jitter and requires a reference time which is taken as the hodoscope time for these events.
- Plot these times for every channel.
 - Needs time walk correction (work in progress).
 - Secondary peaks thought to be light reflected to back of PMT module before entering PMT (can remove with time cut).

Image from Sebastian Seeds. Scott Barcus

Jefferson Lab

Preliminary Timing Resolution

- Isolate elastic proton events and find the HCal TDC time of the highest energy PMT in the largest energy cluster for each event.
- This time has significant jitter and requires a reference time which is taken as the hodoscope time for these events.
- Plot these times for every channel.
 - Needs time walk correction (work in progress).
 - Secondary peaks thought to be light reflected to back of PMT module before entering PMT (can remove with time cut).

Preliminary Timing Resolution

- Project out timing of a single PMT with more statistics to find individual timing resolution.
- Apply time walk correction.
- Timing resolutions for individual PMTs ≈1 ns (with better time walk correction as low as 0.6 ns).
- Need more statistics replayed.

ProjectionY of binx=175 [x=174.0..175.0]

- The SBS HCal has successfully been commissioned collecting elastic hadrons during the G_M^n run!
- Preliminary analyses indicate detector is performing as expected.
 - Position resolution at low hadron energy $\approx\!\!7\text{-}8$ cm.
 - Detection efficiency uniformity looks constant over HCal's surface.
 - Timing resolutions for individual PMTs $\approx\!\!1$ ns (can likely improve).
- Upcoming Work:
 - Finalize calibrations and DB geometry then mass replay data.
 - High statistics analyses and extraction of the $p/n\ cross\ section\ ratio.$
 - Integrate VTP software trigger for upcoming experiments.
 - Study performance of individual modules to make improvements.
 - Test software fixes for LED pulser sequences.

Acknowledgments

Many people and institutions were involved in HCal's development:

- Special thanks to Juan Carlos Cornejo and Sebastian Seeds for getting HCal where it is today.
- Thanks to the many students who have worked on HCal including Alexis Ortega, So Young Jeon, Jorge Peña, Carly Wever, Vanessa Brio, Sebastian Seeds, and Provakar Datta.
- Thanks to Gregg Franklin, Brian Quinn, and the Carnegie Mellon team for design, overseeing construction, and ongoing guidance.
- Thanks to Universitá di Catania for major financial contributions.
- Thanks to Vanessa Brio, Cattia Petta, and Vincenzo Bellini for their cosmic commissioning efforts.
- Thanks to Alexandre Camsonne and Bryan Moffit for DAQ work.
- Thanks to Chuck Long for all his help fixing and acquiring things.
- Thanks to Bogdan Wojtsekhowski for his guidance and advice.
- Thanks to the rest of the HCal Working Group as well:Dimitrii Nikolaev, Jim Napolitano, and Donald Jones. Scott Barcus

References

- Vlasov, N. V. *et al.* (2006). "A Calorimeter for Detecting Hadrons with Energies of 10-100 GeV". In: *Instruments and Experimental Techniques* 49, pp. 41–55.
- Puckett, A. (2019). SBS Physics Program Proposed and New. URL: https://hallaweb.jlab. org/12GeV/SuperBigBite/meetings/col_2019feb26/talks/PuckettSBSphysics.pdf.
- Quinn, B., B. Wojtsekhowski, R. Gilman, et al. (2008). Precision Measurement of the Neutron Magnetic Form Factor up to $Q^2 = 18.0 \ (GeV/c)^2$ by the Ratio Method. URL: https://hallaweb.jlab.org/collab/PAC/PAC34/PR-09-019-gmn.pdf.

Backup Slides

TDC Timing Resolution

- Require cosmic to be nearly 'vertical'.
 - Vertical F1 signals.
 - No surrounding F1 signals.
- TDC time:

$$T_{cor} = T_{PMT} - T_{ref},$$

$$T_{ref} = \frac{TDC \ 1 + TDC \ 2}{2}.$$

• Extract standard deviation of single PMT.

$$\sigma_{PMT} = \sqrt{|\sigma_{cor}^2 - \sigma_{ref}^2|}.$$

	1	
No F1	F1 Hit	No F1
No F1	Measured Module F1 Hit	No F1
No F1	F1 Hit	No F1

LED HV Calibration

- Plots of PMT gain curves and measured number of photoelectrons from LEDs.
 - Images from Sebastian Seeds.

34

Cosmic Calibration Progress

- Plots display the average fADC signal (RAU) during a cosmic event versus PMT module for three runs.
 - Each successive run calibrates signals closer to goal of 61 RAU by adjusting HV.

Average Vertical fADC Cosmic Signal (RAU) per PMT Module

Cosmic Calibration Progress

- Plots display the average fADC signal (RAU) during a cosmic event versus PMT module for three runs.
 - Each successive run calibrates signals closer to goal of 61 RAU by adjusting HV.

Average Vertical fADC Cosmic Signal (RAU) per PMT Module

Cosmic Calibration Progress

- Plots display the average fADC signal (RAU) during a cosmic event versus PMT module for three runs.
 - Each successive run calibrates signals closer to goal of 61 RAU by adjusting HV.

Average Vertical fADC Cosmic Signal (RAU) per PMT Module