

University of New Hampshire Nuclear & Particle Physics Group

# A Measurement of the Proton's Spin Structure Functions in the Truly Strong Region 2022 Winter Status Update

**David Ruth** 

**Hall A Collaboration Meeting** 

February 11, 2022

- 1. Experiment Background
  - First low Q<sup>2</sup> measurement of transverse proton spin structure
- 2. Recent Progress
  - Sanity checks on data
  - Detailed investigation into model input
  - Publication writing and revision
- 3. Publication Progress:





### Motivation:

Measure a fundamental spin observable ( $g_2$ ) in the region 0.02 <  $Q^2$  < 0.20 GeV<sup>2</sup> for the first time

$$\frac{d^2\sigma^{\pm}}{d\Omega dE'} = \sigma_{\text{Mott}} \left[ \alpha F_1(x, Q^2) + \beta F_2(x, Q^2) \pm \gamma g_1(x, Q^2) \pm \delta g_2(x, Q^2) \right]$$

#### $g_1$ and $g_2$ related to spin distribution

- Measurements at Jefferson Lab:
  - RSS medium Q<sup>2</sup> (1-2 GeV<sup>2</sup>) (published)
  - SANE high Q<sup>2</sup> (2-6 GeV<sup>2</sup>) (analysis)
  - g<sub>2</sub>p low Q<sup>2</sup> (0.02-0.20 GeV<sup>2</sup>) (analysis)
- Low Q<sup>2</sup> is difficult:
  - Electrons strongly influenced by target field
  - Strong kinematic dependence on observables
- Low Q<sup>2</sup> is useful:
  - Test predictions of Chiral Perturbation Theory (χPT)
  - Test sum rules and measure moments of  $g_2$
  - Study finite size effects of the proton





### **Recent Spin Structure Studies**

- EG4: Published in Nature Physics in April 2021
  - Low+Medium Q<sup>2</sup> measurement of g<sub>1</sub> and longitudinal moments for Proton
- Small-Angle GDH: Published in Nature Physics in May 2021
  - Low+Medium Q<sup>2</sup> measurement of g<sub>1</sub> and g<sub>2</sub> for Neutron
- New χPT Calculations: Bernard et. al calculation in 2013 gave closer agreement to results of E94010
- Alarcon et. al calculation has been updated several times, most recently in 2020
- These calculations disagree at low Q<sup>2</sup> for the proton, showing that there are unanswered questions about QCD in the chiral domain



V. Sulkosky et al. Nature Physics 17, 687-692



# Hall A Experimental Setup:



# g<sub>2</sub>p Kinematic Coverage



# Extracting Spin Structure by Looking at Cross Section Differences



Inclusive polarized cross sections

$$\frac{d^2\sigma^{\uparrow\uparrow}}{dE'd\Omega} - \frac{d^2\sigma^{\downarrow\uparrow}}{dE'd\Omega} = \frac{4\alpha^2}{M\nu Q^2} \frac{E'}{E} \bigg[ g_1(x,Q^2) \{E + E'\cos\theta\} - \frac{Q^2}{\nu} g_2(\nu,Q^2) \bigg] \bigg] g_2(\nu,Q^2)$$

Parallel



$$\frac{d^2\sigma^{\uparrow\Rightarrow}}{dE'd\Omega} - \frac{d^2\sigma^{\downarrow\Rightarrow}}{dE'd\Omega} = \frac{4\alpha^2}{M\nu Q^2} \frac{E'^2}{E} \sin\theta \bigg[\nu g_1(x,Q^2) + 2Eg_2(\nu,Q^2)\bigg]$$

Perpendicular

$$\Delta \sigma_{\perp} = \frac{d^2 \sigma}{d\Omega dE'} (\downarrow \rightarrow -\uparrow \rightarrow) = 2 \cdot A_{\perp} \sigma_{0} \qquad \qquad \text{From Model}$$
From Data
University of New Hampshire

# Recent Updates: Model Cross Section



- g2p data has good agreement with Bosted-Christy Model if a scaling of 1.15 is used
- We investigated this scaling in depth and determined its impact on the moments is less than 6%
- Transverse acceptance forces us to use model cross section

0.25

- Bosted-Christy model in this region is based on E61, while g2p and onen1haf require a similar scaling factor
- However all three experiments agree within error



### Recent Updates: Longitudinal Sanity Checks



- Compared polarized cross section difference from data, to Δσ<sub>II</sub> from model and dilutioncorrected asymmetry
- Good agreement is a sanity check on the dilution and the use of the model for the transverse settings

### First publication nearly finished

- We have been hard at work on a paper focused on the transverse results with the intention of submission to Nature Physics, following the success of the EG4 and Small-Angle GDH Experiments in that journal
- Paper is nearly complete and has been sent to our core group for comments
- We aim to send our draft to the Hall A collaboration for comments and the C.C. for approval within a few weeks.

#### Moments of the Proton Spin Structure Function $g_2$ in the Truly Strong Region

D. Ruth,<sup>1</sup> R. Zielinski,<sup>1</sup> C. Gu,<sup>2</sup> T. Badman,<sup>1</sup> M. Cummings,<sup>3</sup> M. Huang,<sup>4</sup> J. Liu,<sup>2</sup> P. Zhu,<sup>5</sup> K. Allada,<sup>6</sup> J. Zhang,<sup>7</sup> A. Camsonne,<sup>7</sup> J.P. Chen,<sup>7</sup> K. Slifer,<sup>1</sup> K. Aniol,<sup>5</sup> J. Annand,<sup>9</sup> T. Averett,<sup>3</sup> H. Baghdasaryan,<sup>2</sup> V. Bellini,<sup>10</sup> W. Boeglin,<sup>11</sup> J. Brock,<sup>7</sup> C. Carlin,<sup>7</sup> C. Chen,<sup>12</sup> F. Cisbani,<sup>13</sup> D. Crabb,<sup>2</sup> D. Day,<sup>2</sup> L. Elfassi,<sup>14</sup> M. Friedman,<sup>15</sup> E. Fuchey,<sup>16</sup> H. Gao,<sup>4</sup> M. Hafez,<sup>17</sup> Y. Han,<sup>12</sup> O. Hansen,<sup>7</sup> M. Hashemi Shabestari,<sup>2</sup> D. Higinbotham,<sup>7</sup> S. Iqbal,<sup>8</sup> E. Jensen,<sup>18</sup> H. Kang,<sup>19</sup> H. Kang,<sup>19</sup> C.D. Keith,<sup>7</sup> A. Kelleher,<sup>6</sup> D. Keller,<sup>2</sup> H. Khanal,<sup>11</sup> I. Koroyer,<sup>20</sup> G. Kumbartzki,<sup>14</sup> J. Lichtenstadt,<sup>20</sup> E. Long,<sup>1</sup> S. Malace,<sup>21</sup> J. Maxwell,<sup>1,7</sup> D.M. Meekins,<sup>7</sup> C. McLean,<sup>3</sup> R. Michaels,<sup>7</sup> M. Mihovilovic,<sup>22</sup> N. Muangma,<sup>6</sup> C. Munoz Camacho,<sup>23</sup> K. Myers,<sup>14</sup> Y. Oh,<sup>19</sup> M. Pannunzio Carmignotto,<sup>24</sup> C. Perdrisat,<sup>3</sup> S. Phillips,<sup>1</sup> J. Pierce,<sup>7,25</sup> V. Punjabi,<sup>26</sup> Y. Qiang,<sup>7</sup> P. Reimer,<sup>27</sup> O. Rondon,<sup>2</sup> G. Russo,<sup>10</sup> K. Saenboonruang,<sup>2</sup> B. Sawatzky,<sup>7</sup> A. Shahinyan,<sup>28</sup> R. Sheyor,<sup>20</sup> S. Sirca,<sup>22</sup> J. Sjoegren,<sup>9</sup> P. Solvignon-Slifer,<sup>1</sup> N. Sparveris,<sup>16</sup> V. Sulkosky,<sup>6</sup> F. Wesselmann,<sup>29</sup> Z. Ye,<sup>2</sup> M. Yurov,<sup>2</sup> Y. Zhang,<sup>14</sup> Y. Zhao,<sup>5</sup> and X. Zheng<sup>2</sup> (The E08-027 Collaboration)

<sup>1</sup>University of New Hampshire, Durham, New Hampshire 03824, USA
 <sup>2</sup>University of Virginia, Charlottesville, Virginia 22903, USA
 <sup>3</sup>The College of William and Mary, Williamsburg, Virginia 23187, USA
 <sup>4</sup>Duke University, Durham, NC 27708, USA
 <sup>5</sup>University of Science and Technology, Hefei 230000, China
 <sup>6</sup>Massachusetts Institute of Technologu, Cambridae, MA 02139, USA

Author list is **not final** and is under careful review



#### Structure Function Results

Blue Stars  $-g_2$  (Transverse Setting) Red Xs  $-g_1$  (Longitudinal Setting)





- Eo8-o27 data is consistent with previously published data from CLAS
- But with much better statistics!!



# First Moment of $g_2(x, Q^2)$

 $\Gamma_2 = \int_{-\infty}^{\infty} g_2(x,Q^2) dx$ 



Burkhardt-Cottingham Sum rule says this moment should be zero everywhere...

Unmeasured, low x part difficult to calculate accurately at low Q<sup>2</sup>

Distance between Measured+elastic and zero can be taken as measurement of this hard to measure region if BC sum rule is followed



### d2 Higher Matrix Element

$$\overline{d_2} = \int_0^{x_{th}} x^2 [2 g_1(x, Q^2) + 3 g_2(x, Q^2)] dx$$



Data agrees with sign and trend of MAID model

Moment is an interesting way to probe quark-gluon correlations at low Q<sup>2</sup>





# Conclusion

- The  $g_2 p$  experiment was a precision measurement of proton  $g_2$  in low  $Q^2$  region for the first time!
- Analysis is <u>complete</u>!
- First publication is **almost done** and nearly ready to be shared with all of our collaborators



# Acknowledgements

### g2p Analysis Team

#### Spokespeople:

J.P. Chen Karl Slifer Alexandre Camsonne Don Crabb

#### **Post-Docs**:

Kalyan Allada James Maxwell Vince Sulkosky Jixie Zhang

#### Graduate Students:

Ryan Zielinski Chao Gu Toby Badman Melissa Cummings Min Huang Jie Liu Pengjia Zhu



### Additional Slides: Model Scaling Factor Impact

Input from Hall B model

$$g_1(x,Q^2) = K_1 \left[ \Delta \sigma_{||} \left( 1 + \frac{1}{K_2} an \frac{ heta}{2} 
ight) 
ight] + rac{2g_2(x,y)}{K_{2y}}$$

#### Combination of data & Bosted model

- Scaling factor is on Bosted-Christy XS
- Hall B has different systematics
- Input term is a significant part of the SSF: ~30%
- Propagate through Bosted-Christy with scaling of 1.0 vs scaling of 1.15 for Longitudinal setting

 $\tan \frac{\theta}{2}$ 

- Everything else stays the same
- Form a 'zeroeth order' and 'second order' moment:

$$M_0 = \int g_1 dx \qquad \qquad M_2 = \int x^2 g_1 dx$$

- Zeroeth order difference is suppressed by Hall B term
- 2<sup>nd</sup> order difference is further suppressed by x<sup>2</sup> weighting
- Highest difference is ~6%



