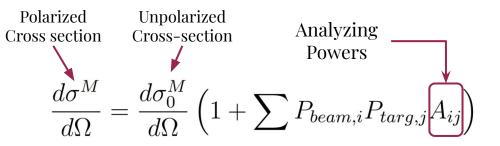
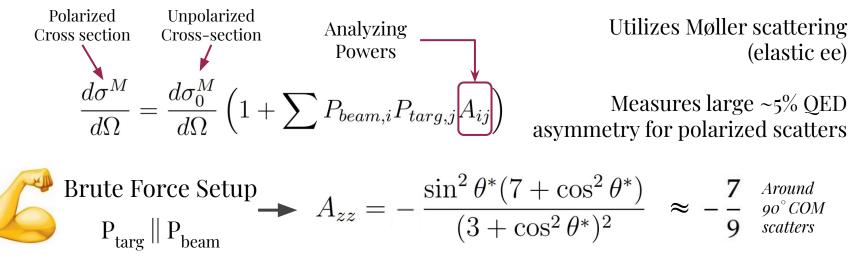

CREX Polarimetry 2022 Hall A Winter Collaboration Meeting

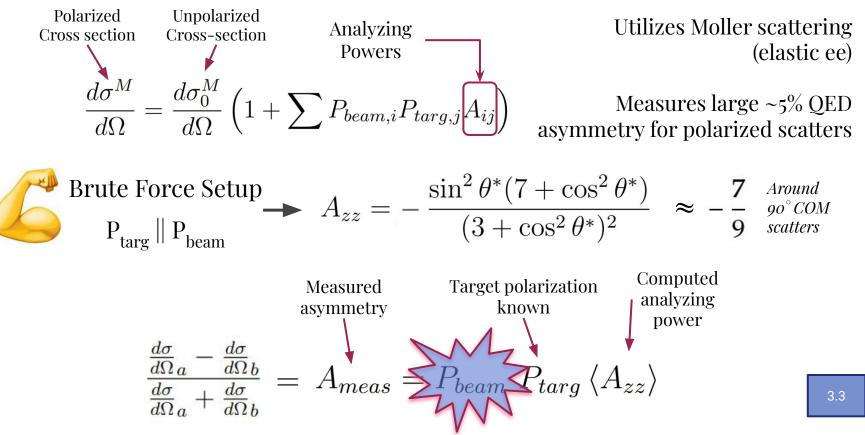
Eric King On behalf of the CREX Møller and Compton Polarimetry Working Groups

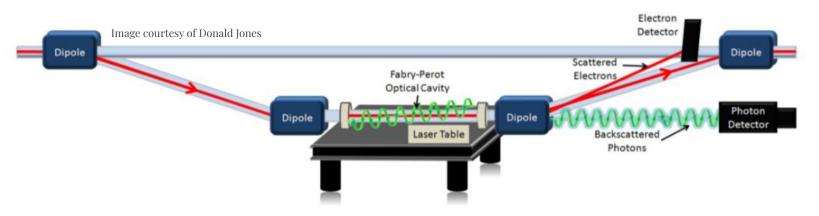


Beam scatters off \succ polarized foil.

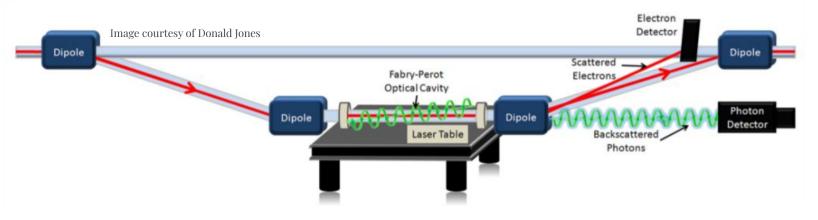
Eric King

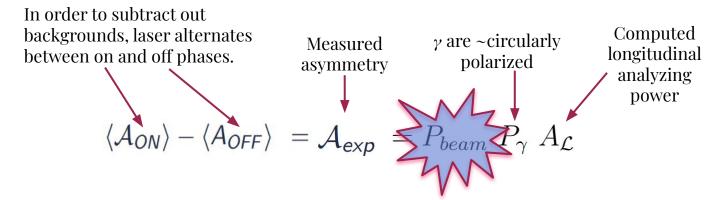

Hall A Collaboration Meeting | Feb 10-11 2022

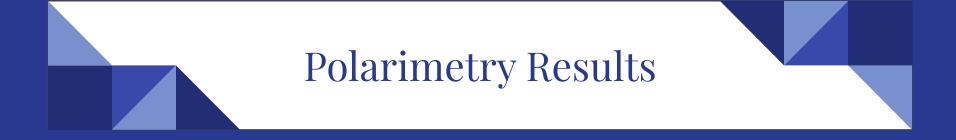

- Mollers are steered by \succ quadrupoles into dipole.
- Dipole bends events to \succ detector situated below the beamline.


Utilizes Møller scattering (elastic ee)

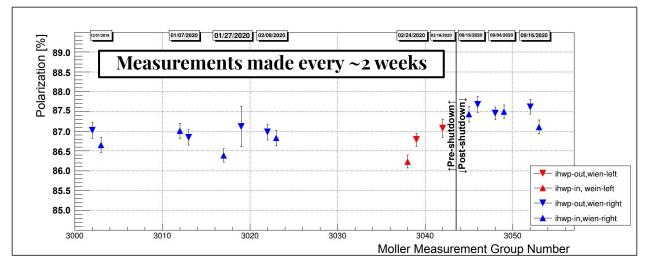
Measures large ~5% QED asymmetry for polarized scatters


Compton Polarimeter

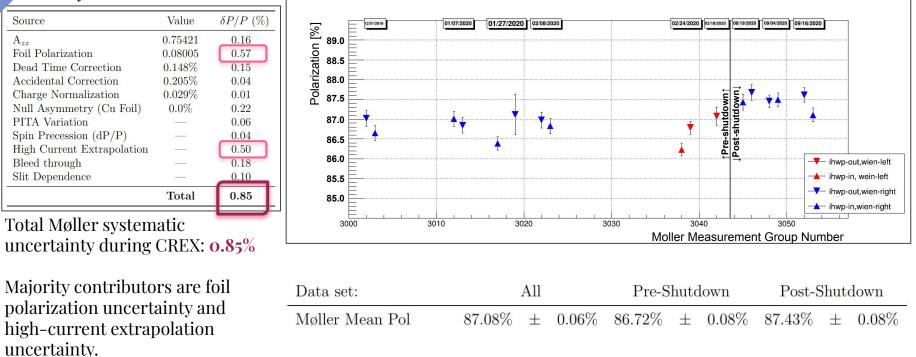



Takes advantage of the scattering asymmetry of Compton Scattering

- Beam electrons interact with γ in optical cavity.
- Back-scattered photons picked up by photon detector.
- Compton polarimetry allows a non-invasive continuous measurement of beam polarization while experiments are running.

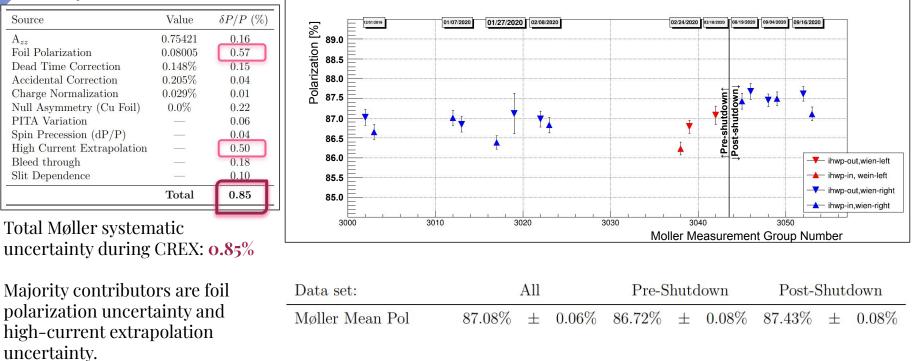

Compton Polarimeter

Møller Measurements During CREX


Data set:	All	Pre-Shutdown	Post-Shutdown
Møller Mean Pol	$87.08\% \pm 0.06\%$	$686.72\% \pm 0.08\%$	$87.43\% \pm 0.08\%$

Moller Measurements During CREX

Systematics Table


Feb 10-11 2022 | Eric King

n Meeting

Moller Measurements During CREX

Systematics Table

Moller mean polarization over CREX was $87.08\% \pm 0.06\%$ (stat) $\pm 0.85\%$ (sys)

5.3

CREX Systematics Comparison to PREX-I

Systematics Table CREX

Valuo	$\delta P/P$ (%)
value	01/1 (70)
0.75421	0.16
0.08005	0.57
0.148%	0.15
0.205%	0.04
0.029%	0.01
0.0%	0.22
1 <u></u> 1	0.06
	0.04
	0.50
	0.18
	0.10
Total	0.85
	0.08005 0.148% 0.205% 0.029% 0.0%

Systematics Table PREX-I

Variable	dA / A	
Foil Polarization	0.25%	5
Target Saturation	0.3%	
Target Temperature	0.02%	
Target-to-target variation	0.5%	Data: 0. Glamazdin, Collaboration Meeting
Analyzing Power	0.3%	. Glar
Levchuk Effect	0.5%	Data: O
Dead time	0.3%	Da
Background	0.3%	DRFV
Others	0.5%	
Total	1.1%	

Quoted CREX "Foil Polarization" systematic: polarization, saturation and temperature corrections. We took a very conservative approach to this but it remains a dominant systematic.

CREX Systematics Comparison to PREX-I

Systematics Table CREX

Source	Value	$\delta P/P~(\%)$
Azz	0.75421	0.16
Foil Polarization	0.08005	0.57
Dead Time Correction	0.148%	0.15
Accidental Correction	0.205%	0.04
Charge Normalization	0.029%	0.01
Null Asymmetry (Cu Foil)	0.0%	0.22
PITA Variation	·	0.06
Spin Precession (dP/P)	-	0.04
High Current Extrapolation		0.50
Bleed through		0.18
Slit Dependence		0.10
	Total	0.85

Systematics Table PREX-I

Variable	dA / A
Foil Polarization	0.25%
Target Saturation	0.3%
Target Temperature	0.02%
Target-to-target variation	0.5%
Analyzing Power	0.3%
Levchuk Effect	0.5%
Dead time	0.3%
Background	0.3%
Others	0.5%
Total	1.1%

- > [Major Improvement] Levchuk effect: Rolled into our analyzing power systematic.
 - We had an effective method for effectively eliminating this and the total systematic uncertainty for the Levchuk Effect was 0.06%

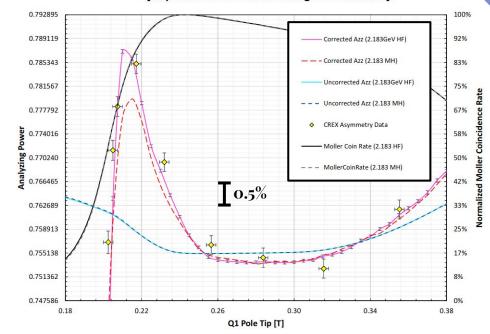
PREX Collaboration Meeting (2011)

CREX Systematics Comparison to PREX-I

Systematics Table CREX

Source	Value	$\delta P/P~(\%)$
A_{zz}	0.75421	0.16
Foil Polarization	0.08005	0.57
Dead Time Correction	0.148%	0.15
Accidental Correction	0.205%	0.04
Charge Normalization	0.029%	0.01
Null Asymmetry (Cu Foil)	0.0%	0.22
PITA Variation	<u></u> 2	0.06
Spin Precession (dP/P)		0.04
High Current Extrapolation		0.50
Bleed through		0.18
Slit Dependence		0.10
	Total	0.85

Systematics Table PREX-I


Variable	dA / A	
Foil Polarization	0.25%	
Target Saturation	0.3%	2011)
Target Temperature	0.02%	in, ting (
Target-to-target variation	0.5%	Data: O. Glamazdin, Collaboration Meeting (2011
Analyzing Power	0.3%	. Glar ation
Levchuk Effect	0.5%	Data: O. ollabor
Dead time	0.3%	Da
Background	0.3%	PREX (
Others	0.5%	
Total	1.1%	

- ➤ High Current Extrapolation: Experiment runs at ~100 uA and Moller polarimetry is performed at ~1 uA range.
 - Constrained by 2007 Hall C studies to the 0.5% level.
 - Unsure if this was considered in PREX-I systematics.

Moller Improvements

- Addition of harp for precision alignment of beam onto foil.
 - This made CREX Møller setups (and measurements) highly reproducible
 - Granted systematics study time (image on right) that provided fundamental improvements on understanding our dominant analyzing power correction (Levchuk Effect).


CREX Q1 Scan :: 2.183GeV HartreeFock / 2.183GeV ModHy [Anpower Bars are 0.5% Change off 0.755138]

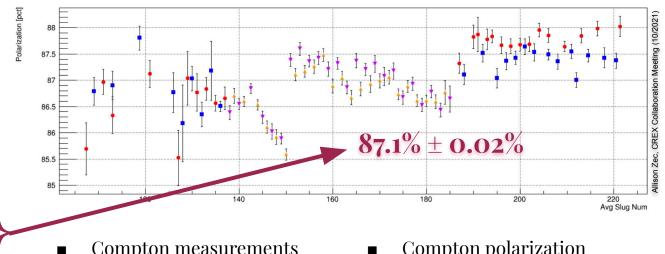
Modified Hydrogen wavefunctions - - - - used for Levchuk Effect are now replaced by Hartree-Fock derived momentum distributions _____.

 \succ

Compton Results During CREX

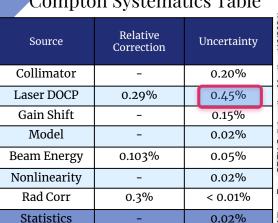
Compton measurements aligned in time with **CREX** slugs

Compton polarization average weighted by A_{pv} uncertainty of matching slugs.

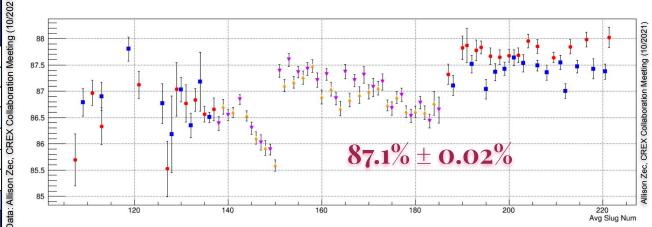

Compton Results During CREX

The Compton team examined multiple averaging models all of which yielded consistent results:

Escargatoire Average 87.118% ± 0.018%


Piecewise Fitting 87.119% ± 0.016%

Mini-Esc. Average 87.104% ± 0.019%



 Compton measurements aligned in time with CREX slugs Compton polarization average weighted by A_{PV} uncertainty of matching slugs.

Compton Results During CREX

Compton Systematics Table

Compton measurements aligned in time with **CREX** slugs

Compton polarization average weighted by A_{pv} uncertainty of matching slugs.

Compton mean polarization over CREX was $87.1\% \pm 0.02\%$ (stat) $\pm 0.52\%$ (sys) 8.3

Total

Driving contributor to Compton systematic is the degree of circular polarization at 0.45%.

0.52%

Compton Systematics Compared to HAPPEX-III

CREX Systematics Table

HAPPEX-III Systematics Table

Source	Relative Correction	Uncertainty	2021)
Collimator	-	0.20%	(10/2
Laser DOCP	0.29%	0.45%	etirg
Gain Shift	-	0.15%	Collaboration Meeting (10/2021)
Model	-	0.02%	oratio
Beam Energy	0.103%	0.05%	ollab
Nonlinearity	-	0.02%	CREX C
Rad Corr	0.3%	< 0.01%	-
Statistics	-	0.02%	Allison Zec
Total	-	0.52%	Alliso

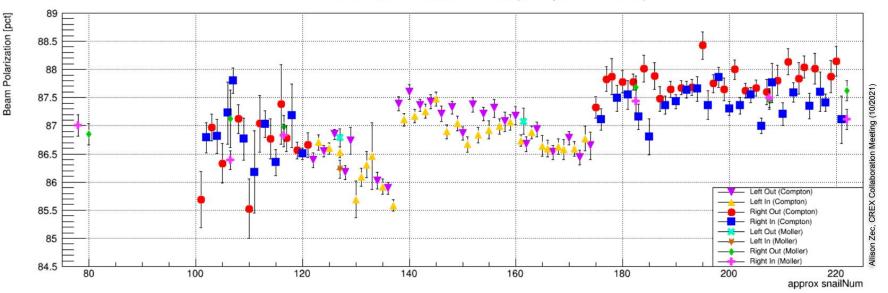
Systematic E	Errors
Laser Polarization	0.80%
Signal Analyzing Power:	
Nonlinearity	0.30%
Energy Uncertainty	0.10%
Collimator Position	0.05%
Analyzing Power Total	0.33%
Gain Shift:	
Background Uncertainty	0.31%
Pedestal Uncertainty	0.20%
Gain Shift Total	0.37%
Total Uncertainty	0.94%

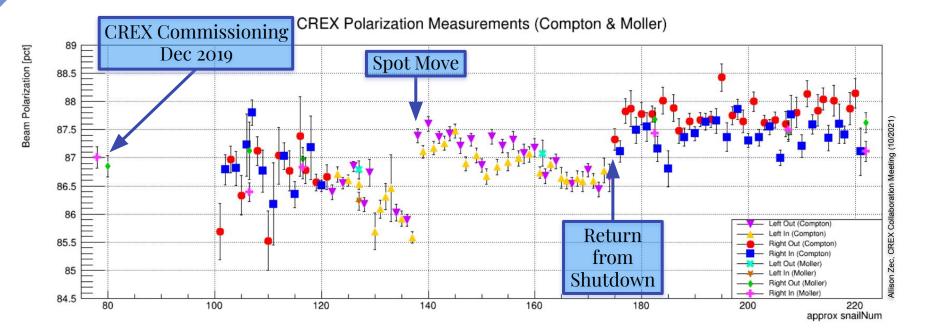
> [Major Improvement] Measurement of the DOCP of the Compton laser.

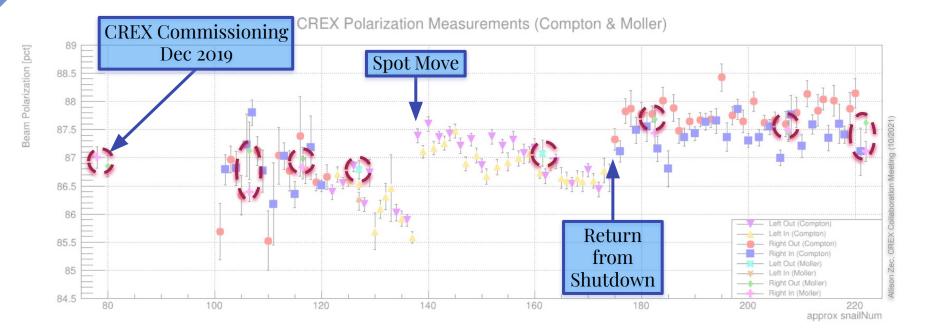
Compton Systematics Compared to HAPPEX-III

CREX Systematics Table

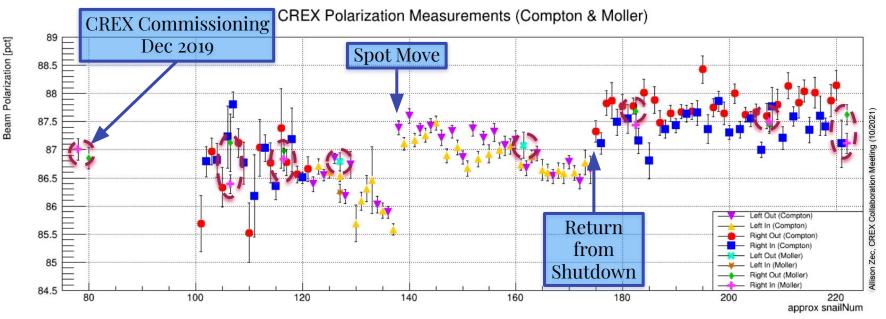
Source	Relative Correction	Uncertainty	2021)
Collimator	_	0.20%	(10/2
Laser DOCP	0.29%	0.45%	eting
Gain Shift	_	0.15%	n Me
Model	-	0.02%	oratio
Beam Energy	0.103%	0.05%	ollab
Nonlinearity	-	0.02%	EXC
Rad Corr	0.3%	< 0.01%	c, CR
Statistics	-	0.02%	Allison Zec, CREX Collaboration Meeting (10/2021)
Total	-	0.52%	Alliso


HAPPEX-III Systematics Table

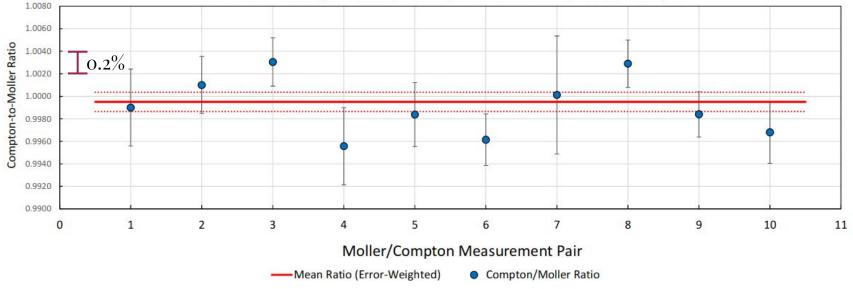

Systematic Errors		
Laser Polarization	0.80%	
Signal Analyzing Power:		06 105
Nonlinearity	0.30%	00 10
Energy Uncertainty	0.10%	101001
Collimator Position	0.05%	
Analyzing Power Total	0.33%	OL NIIN ACTO
Gain Shift:		
Background Uncertainty	0.31%	Eriond of
Pedestal Uncertainty	l Uncertainty 0.20%	
Gain Shift Total	0.37%	
Total Uncertainty	0.94%	Doto: M


> [Major Improvement #2] Better understanding of the photon detector gain shift.

Final CREX Polarization Moller/Compton Combined Results


CREX Polarization Measurements (Compton & Moller)

Hall A Collaboration Meeting | Feb 10



Møller and Compton measurements <u>were consistent</u> throughout the CREX experiment.

Hall A Collaboration Meeting | Feb 10

Comparison of Compton & Møller Polarization Measurements

Polarization Ratios (Compton / Moller) :: Moller v. Compton (+/- 2 days)

- Møller measurements were compared to Compton measurements taken within roughly ± 48 hours.
- The mean Compton/Møller ratio was 0.9995 ± 0.0008


Ratio consistent with 1 at the $\sim 0.1\%$ level.

CREX Running Moller Result $\mathcal{P}_e = (87.1 \pm 0.85)\%$ CREX Running Compton Result $\mathcal{P}_e = (87.1 \pm 0.52)\%$

- Sub 1% precision measurement from Moller.
 - This is a JLab tie for 'best' for a Møller measurement (between Hall A and C Møller polarimeters).
 - This is a marked improvement for the Hall A polarimeter.

- Highest precision for any experiment performed at JLab.
- Compton measurement at 0.5% is an *apparent* record breaker.
 - There's no knowledge of any experiment claiming better precision.

 \succ

CREX Compton+Moller Combined Result

 $\mathcal{P}_e = (87.1 \pm 0.44)\%$

We have a combined **0.44%** high-precision polarimetry measurement!

- > Substantial systematic uncertainty improvements
 - Compton: In high-precision territory 0.52%.
 - Møller: Improvements over previous measurements; current systematics are likely overly-convservative.
 - Major step towards future PV experimental requirements.
 - Two independent measurements utilizing different physical processes

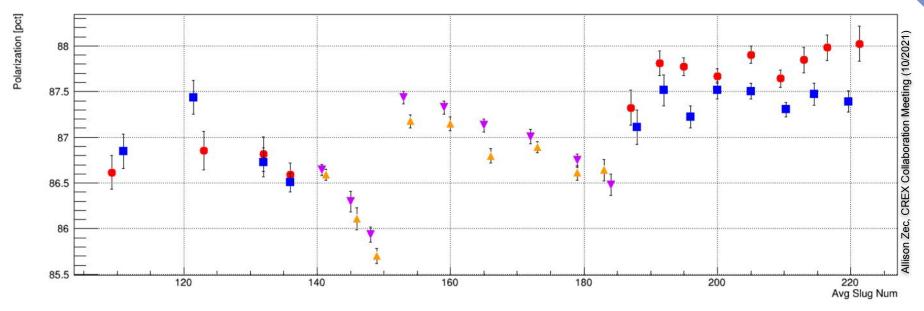
THE TWO MEASUREMENTS AGREE !!!

Combined

CREX Polarimetry Teams

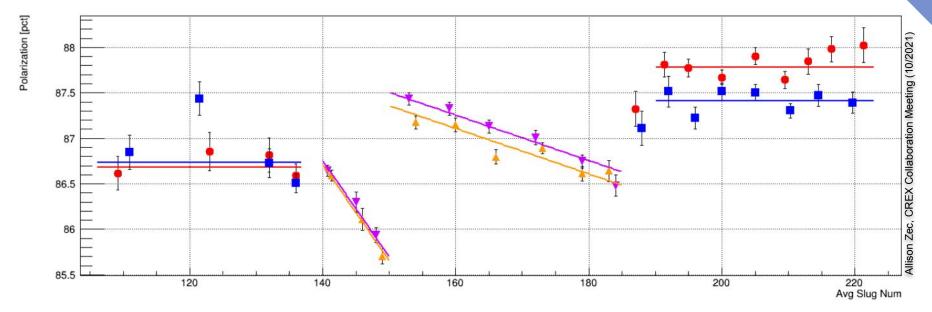
<u>Møller</u>:

Eric King; Paul Souder; Donald Jones; Bill Henry; Jim Napolitano; Simona Malace; Dave Gaskell; and Kent Paschke.

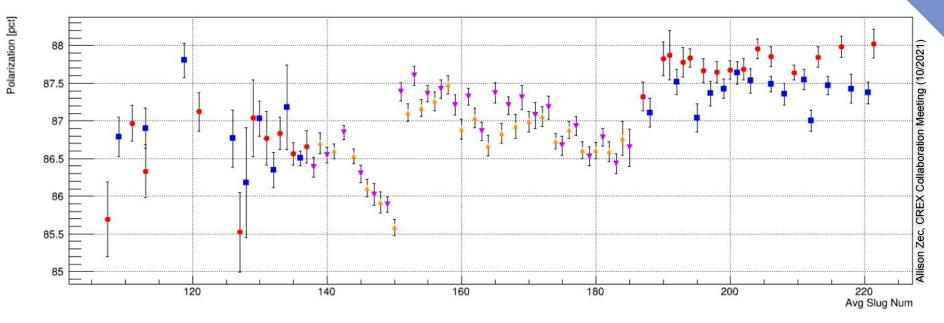

<u>Compton</u>:

Allison Zec; Dave Gaskell; Amali Premithilake; Juan Carlos Cornejo; Kent Paschke; Ciprian Gal; Caryn Palatchi; and Mark Dalton.

14



Compton Polarization Averaging [Method 1]


- Grouped Compton \succ measurements which are aligned in time with CREX slugs.
- Groupings then \succ weighted by error of corresponding A_{pv} measurement.
- Average calculated \succ polarization:
 - (87.118 ± 0.018 (stat))%

Compton Polarization Averaging [Method 2]

- Grouped Compton measurements which are aligned in time with CREX slugs.
- Groupings then weighted by error of corresponding A_{PV} measurement.
- Average calculated polarization:
 - (87.119 ± 0.016 (stat))%

Compton Polarization Averaging [Method 3]

 Compton measurements grouped IFF they overlapped with CREX slugs.

22 | Eric King

on Meeting

- Averages derived from fit evaluations and uncertainties come from fit parameters.
- Average calculated polarization:
 - (87.104 ± 0.019 (stat))%

17