

E12-07-108: GMp-12 (and TPE at high Q²)

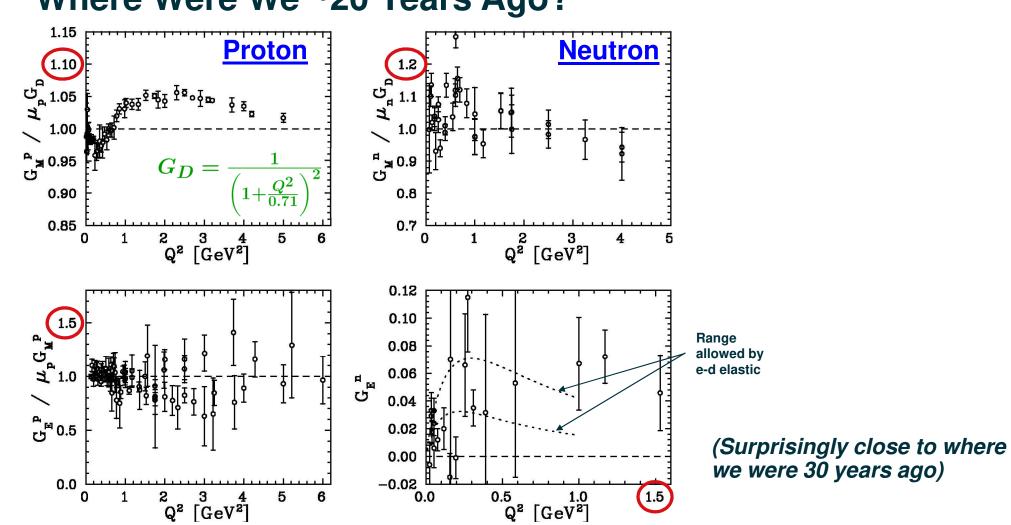
John Arrington

Hall A Collaboration Meeting, February 2022

E12-07-108: GMp-12 (and TPE at high Q²)

John Arrington

Hall A Collaboration Meeting, February 2022



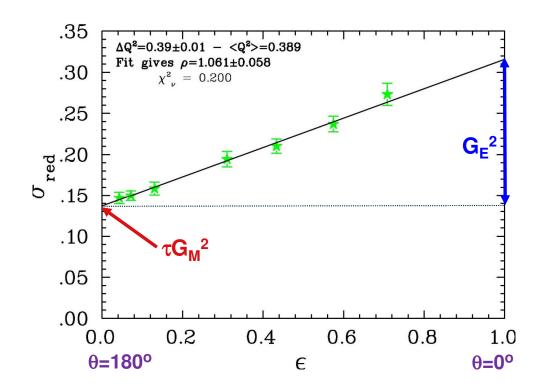
Nucleon Electromagnetic Form Factors

- Fundamental properties of the proton and neutron
 - Provide deviation of cross section from point-particle scattering
 - Contain information on charge, magnetization distributions
 - Connect to distribution, dynamics of quarks in hadrons
- Experimental program reinvented at JLab
 - Considered by many to be well understood by mid/late 80s
 - Polarization techniques \rightarrow dramatic advances in Q² range, precision
- Many applications of these new data/techniques
 - Precise knowledge of FFs needed by other experiments
 - Advances in other programs, relying on same techniques

Where Were We ~20 Years Ago?

Unpolarized Elastic e-N Scattering

Nearly all of the measurements used Rosenbluth separation

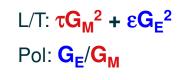

 $\sigma_{\mathsf{R}} = \mathsf{d}\sigma/\mathsf{d}\Omega \left[\varepsilon(1+\tau)/\sigma_{\mathsf{Mott}}\right] = \begin{bmatrix} \tau \mathsf{G}_{\mathsf{M}}^2 + \varepsilon \mathsf{G}_{\mathsf{E}}^2 \\ \varepsilon = \begin{bmatrix} 1 + 2(1+\tau)\tan^2(\theta/2) \end{bmatrix}^{-1} \\ \varepsilon = \begin{bmatrix} 1 + 2(1+\tau)\tan^2(\theta/2) \end{bmatrix}^{-1} \end{bmatrix}$

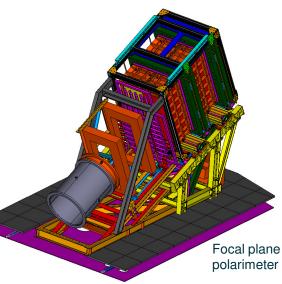
Reduced sensitivity when one term dominates:

- $\cdot G_M$ if $\tau << 1$
- G_E if $\tau >> 1$

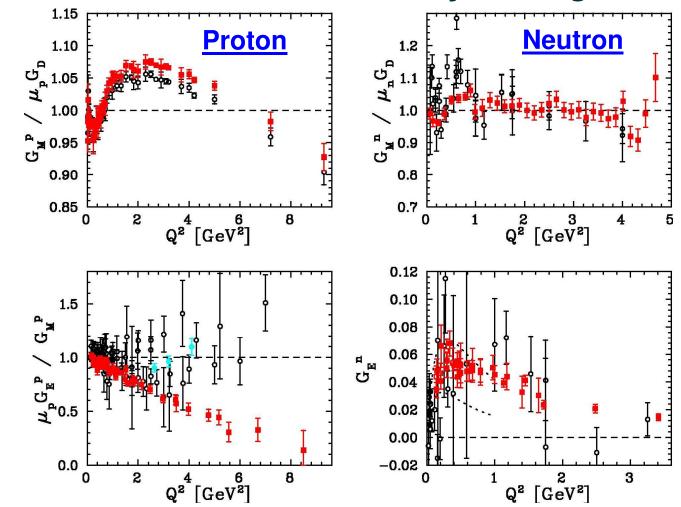
•
$$G_E$$
 if $G_E^2 << G_M^2$ (neutron)

Lack of free neutron target: Corrections for nuclear effects and proton contributions

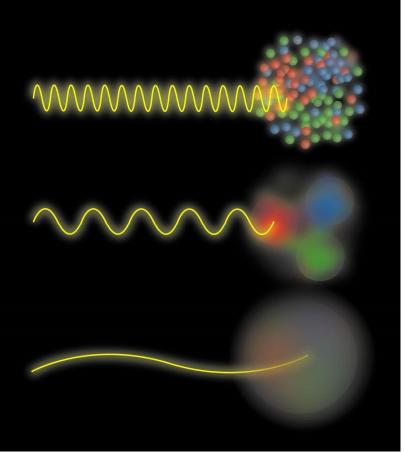

New techniques: Polarization and A(e,e'N)


• Mid '90s brought measurements using improved techniques

- Polarized beams with polarized target or recoil polarimeter
- Large, efficient neutron detectors for ²H(e,e'n)
- Improved models for nuclear corrections


Polarized 3He target

Bigbite in Hall A at JLab



Nucleon Form Factors: 5 years ago

Impact of Recent Form Factor Measurements

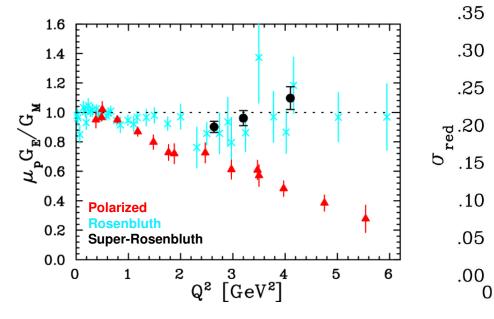
- High-Q² Measurements (2000+)
 - Quark structure, orbital angular momentum
 - Charge/magnetization densities in Infinite-Momentum Frame
- Low/Modest-Q² Measurements (2003+)
 - Comparison of charge, magnetic form factors
 - Flavor dependence up to 3.4 GeV²
- Proton charge, magnetization radii (2010+)

TWO-PHOTON EXCHANGE

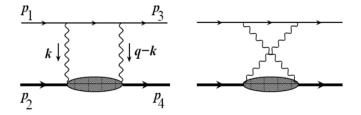
Graphic by Josh Rubin

Rosenbluth - Polarization discrepancy

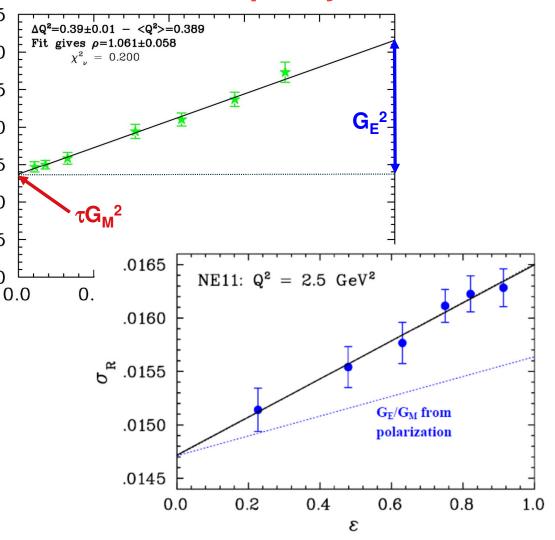
.35


.30

.25


.10

.05

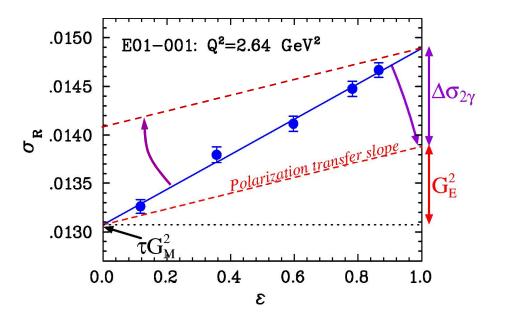

.00

Leading explanation is hard 2-y exchange, not included in standard radiative corrections of Mo-Tsai, etc.

Expected to be relatively small effect: few % or less Can still change Rosenbluth significantly

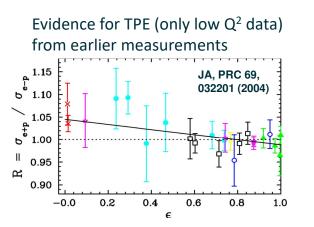
Two-photon exchange corrections (early days)

Two-photon exchange effects can explain discrepancy in G_F


Guichon and Vanderhaeghen, PRL 91, 142303 (2003)

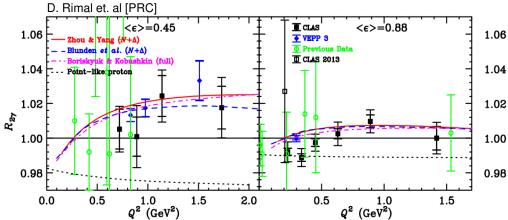
Requires ~6% ε -dependence, weakly dependent on Q², roughly linear in ε JA, PRC 69, 022201 (2004)

If this were the complete story, LT would give G_{M} , Polarization gives G_F/G_M


This is wrong and introduces large errors -• sometimes larger than the real TPE corrections!

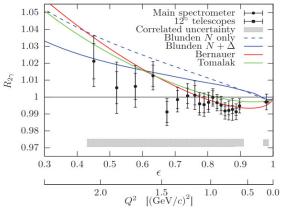
Important to quantify TPE and to constrain calculations to estimate TPE on other reactions


2γ contributions from e+p / e-p ratios


Hard 2 γ contribution comes in with different signs for e+p and e-p => $\sigma + /\sigma - = R_{2\gamma} \sim 1-2\delta_{2\gamma}$

New data from

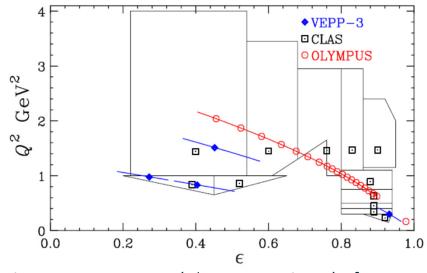
- VEPP-3
- CLAS

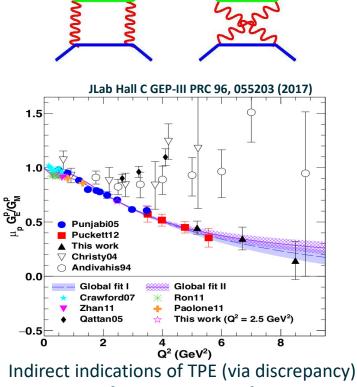


Conclusions from combined analysis of A. Afanasev, P. G. Blunden, D. Hasell, and B. A. Raue:

 \rightarrow CLAS and VEPP-3 and OLYMPUS data exclude no TPE hypothesis at >95% confidence level

- Data of insufficient precision to distinguish calculations of 2-y contributions \rightarrow
- → Renormalization of OLYMPUS results required at twice the estimated uncertainty



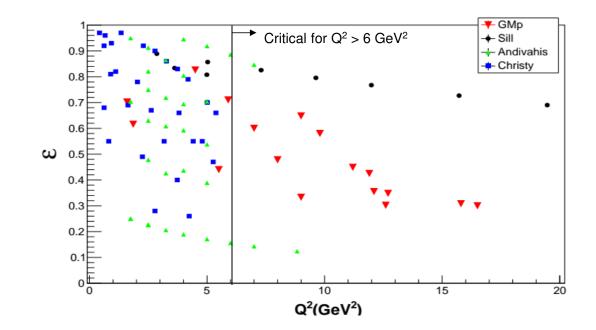

11

Two-Photon Exchange – where we are today

$$\mathbf{R} \equiv \frac{\sigma_{e+}}{\sigma_{e-}} = \frac{(\mathbf{A}_{1\gamma} + \mathbf{A}_{2\gamma})^2}{(\mathbf{A}_{1\gamma} - \mathbf{A}_{2\gamma})^2} \approx 1 + 4 \operatorname{Re}(\mathbf{A}_{2\gamma} / \mathbf{A}_{1\gamma})$$

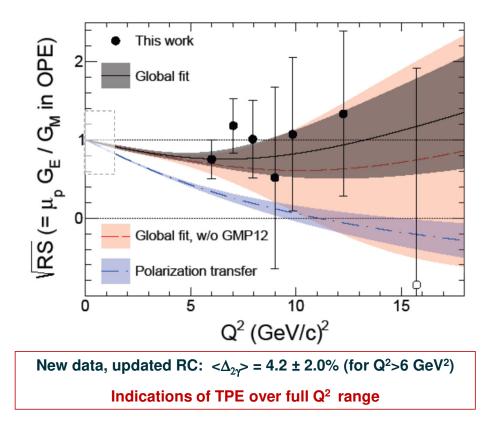
Direct measurements (e^+-e^- comparisons) of TPE up to 0.5 GeV² (old data), up to 2 GeV² (new generation)

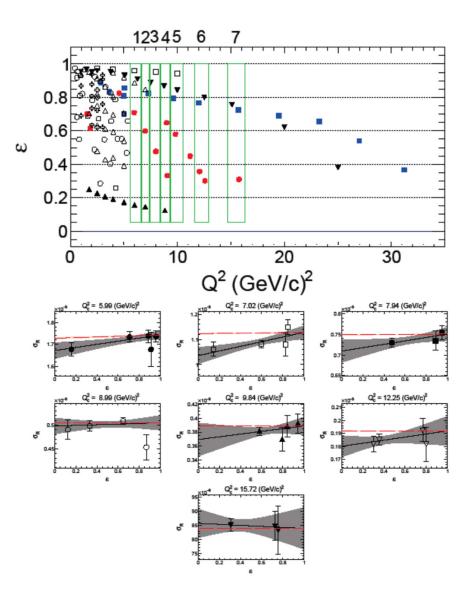
for $\sim 2-7$ GeV² – limited high Q² precision

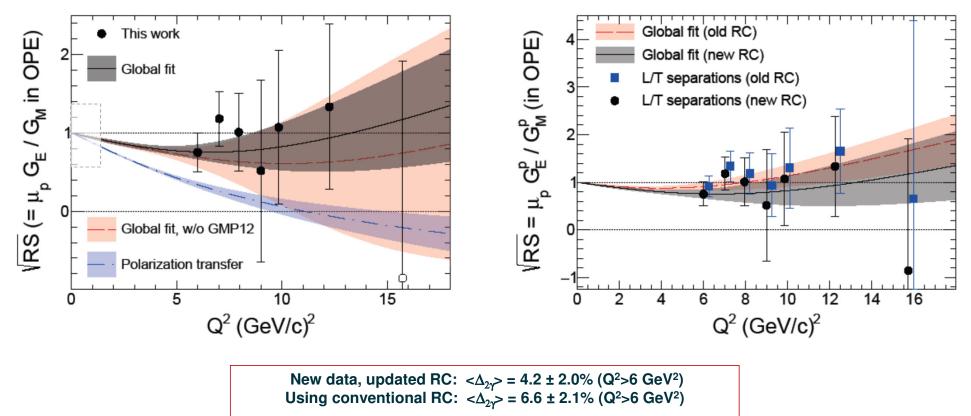

Multiple calculations give qualitative or semi-quantitative description of discrepancy and direct positron measurements

Goals of GMp-12

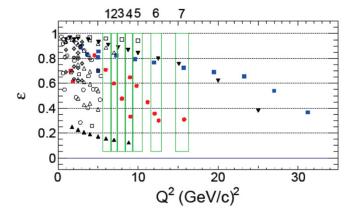
- Precise e-p elastic cross section over wide range of JLab-12 kinematics
 - Input to a wide range of analyses: QE scattering, GEp/GEn/GMn form factors
- Expand measurements of TPE to higher Q² values
- Improved extraction of GMp at high Q^2 (TPE constraints; lower ε for smaller extrapolation)


High precision, wide kinematic range:


- Checks of tracking, optics,...
- Updated radiative corrections A.V.Gramolin and D.M.Nikolenko, PRC 93 (2016) 055201
- Excellent systematic uncertainties
 - 1.2-1.3% point-to-point
 - 1.6% (2% RHRS) normalization


Rosenbluth separations

Global fit to Sill, Andivahis, Christy, and GMp12, all with updated RC, plus direct LT separation points (do not reflect the full high Q² data set) Minimal low-Q² data included: fit focused on high-Q² behavior


New RC resolves roughtly one-third of the discrepancy

Even after this, discrepancy between continues to $Q^2 > 15 \text{ GeV}^2$

Impact on Rosenbluth uncertainties

- Reduced Rosenbluth form factor uncertainties
- Better constraints on TPE (limited by Rosenbluth Uncertainties)
- Precise cross sections across JLab12 kinematics
 - Reduced extrapolation, TPE uncertainty
 - Direct input for several analyses

Goals of GMp-12

- Precise e-p elastic cross section over wide range of JLab-12 kinematics
- Expand measurements of TPE to higher Q² values
- Improved extraction of GMp at high Q²

Accepted by PRL (last week), with 16 page supplement on experiment, analysis, RC, fits, TPE

Sincere thanks to the many people who contributed

Spokespersons:

- John Arrington
- Eric Christy
- Shalev Gilad
- Vincent Sulkosky
- Bogdan Wojtsekhowski

Postdoc:

Kalyan Allada

- Ph.D students (all have defended):
- Thir Gautam (Hampton U.)
- Longwu Ou (MIT)
- Barak Schmookler (MIT)
- Yang Wang (W&M)
- Bashar Aljawrneh (NCA&T)
- Analysis support:
- Andrew Puckett
- Alexander Gramolin

Early 12 GeV running over multiple run periods: Couldn't have happened without strong collaboration and excellent lab support

Thanks to JLab accelerator team, Hall A target group, and all shift takers for their tremendous effort to make the GMp run successful

Form factors and two-photon exchange in high-energy elastic electron-proton scattering

M. E. Christy,¹ T. Gautam,¹ L. Ou,² B. Schmookler,² Y. Wang,³ D. Adikaram,⁴ Z. Ahmed,⁵ H. Albataineh,⁶ S. F. Ali,⁷ B. Aljawrneh,^{8,9} K. Allada,² S.L. Allison,¹⁰ S. Alsalmi,¹¹ D. Androic,¹² K. Aniol,¹³ J. Annand,¹⁴ J. Arrington,^{15,16} H. Atac,¹⁷ T. Averett,³ C. Ayerbe Gayoso,³ X. Bai,¹⁸ J. Bane,¹⁹ S. Barcus,³ K. Bartlett,³ V. Bellini,²⁰ R. Beminiwattha,²¹ J. Bericic,⁴ H. Bhatt,²² D. Bhetuwal,²² D. Biswas,¹ E. Brash,²³ D. Bulumulla,¹⁰ C. M. Camacho,²⁴ J. Campbell,²⁵ A. Camsonne,⁴ M. Carmignotto,⁷ J. Castellanos,²⁶ C. Chen,¹ J-P. Chen,⁴ T. Chetry,²⁷ E. Cisbani,²⁸ B. Clary,²⁹ E. Cohen,³⁰ N. Compton,²⁷ J. C. Cornejo,^{3,31} S. Covrig Dusa,⁴ B. Crowe,³² S. Danagoulian,⁸ T. Danley,²⁷ W. Deconinck,³ M. Defurne,³³ C. Desnault,²⁴ D. Di,¹⁸ M. Dlamini,²⁷ M. Duer,³⁰ B. Duran,¹⁷ R. Ent,⁴ C. Fanelli,² E. Fuchey,²⁹ C. Gal,¹⁸ D. Gaskell,⁴ F. Georges, ³⁴ S. Gilad,² O. Glamazdin,³⁵ K. Gnanvo,¹⁸ A. V. Gramolin,³⁶ V. M. Gray,³ C. Gu,¹⁸ A. Habarakada,¹ T. Hague,¹¹ G. Hamad,²⁷ D. Hamilton,¹⁴ K. Hamilton,¹⁴ O. Hansen,⁴ F. Hauenstein,¹⁰ A. V. Hernandez,⁷ W. Henry,¹⁷ D. W. Higinbotham,⁴ T. Holmstrom,³⁷ T. Horn,⁷ Y. Huang,¹⁸ G.M. Huber ⁽⁵⁾ C. Hyde,¹⁰ H. Ibrahim,³⁸ N. Israel,²⁷ C-M. Jen,³⁹ K. Jin,¹⁸ M. Jones,⁴ A. Kabir,¹¹ B. Karki,²⁷ C. Keppel,⁴ V. Khachatryan,^{40,41} P.M. King,²⁷ S. Li,⁴² W. Li,⁵ H. Liu,⁴³ J. Liu,¹⁸ A. H. Liyanage,¹ D. Mack,⁴ J. Magee,³ S. Malace,⁴ J. Mammei,⁴⁴ P. Markowitz,²⁶ S. Mayilyan,⁴⁵ E. McClellan,⁴ F. Meddi,²⁸ D. Meekins,⁴ K. Mesick,⁴⁶ R. Michaels,⁴ A. Mkrtchyan,⁷ B. Moffit,⁴ R. Montgomery,¹⁴ L.S. Myers,⁴ P. Nadel-Turonski,⁴ S. J. Nazeer,¹ V. Nelyubin,¹⁸ D. Nguyen,¹⁸ N. Nuruzzaman,¹ M. Nycz,¹¹ R.F. Obrecht,²⁹ K. Ohanyan,⁴⁵ C. Palatchi,¹⁸ B. Pandey,¹ K. Park,¹⁰ S. Park,⁴⁰ C. Peng,⁴⁷ F. D. Persio,²⁸ R. Pomatsalyuk,³⁵ E. Pooser,⁴ A.J.R. Puckett,²⁹ V. Punjabi,⁴⁸ B. Quinn,³¹ S. Rahman,⁴⁴ M.N.H. Rashad,¹⁰ P.E. Reimer D.¹⁶ S. Riordan,⁴⁰ J. Roche,²⁷ I. Sapkota,⁷ A. Sarty,⁴⁹ B. Sawatzky,⁴ N. H. Saylor,⁵⁰ M. H. Shabestari,²² A. Shahinyan,⁴⁵ S. Širca,⁵¹ G.R. Smith,⁴ S. Sooriyaarachchilage,¹ N. Sparveris,¹⁷ R. Spies,⁴⁴ A. Stefanko,³¹ T. Su,¹¹ A. Subedi,²² V. Sulkosky,² A. Sun,³¹ Y. Tan,⁵² L. Thorne,³¹ N. Ton,¹⁸ F. Tortorici,²⁰ R. Trotta,⁵³ R. Uniyal,⁷ G.M. Urciuoli,²⁸ E. Voutier,²⁴ B. Waidyawansa,⁴ B. Wojtsekhowski (10,4,* S. Wood, 4 X. Yan, 54 L. Ye, 22 Z. H. Ye, 18,55 C. Yero, 26 J. Zhang, 18 Y. X. Zhao, 40 and P. Zhu⁵⁶