

Calcium Radius Experiment (CREX) Sakib Rahman University of Manitoba (On behalf of the CREX collaboration) February 8, 2022

Introduction

CREX At a Glance

- High-precision Measurement of neutron skin of ⁴⁸Ca using parity violating electron scattering.
- Beam Energy ~ 2.2 GeV Beam Current ~ 150 uA Average Q² ~ 0.0297 GeV² Target ~ 90% ⁴⁸Ca Lab Scattering Angle ~ 5 degrees
- Informs ab initio models and poorly constrained iso-vector terms in nuclear DFT

Poorly understood nuclear landscape and forces at play

The limits of the nuclear landscape, J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A.M. Perhac, M. Stoitsov, Nature (2012)

- A map of all possible nuclei with bounds set by the driplines.
- Ab initio calculations Low to medium mass
- Density functional theory Large mass region and neutron stars

Opposite helicities Created based on source image from D. J. Griffiths. Introduction to elementary particles. Wiley, New York, 1987.

Parity Violating Electron Scattering

- Scatter longitudinally polarized electron beam from nuclei in unpolarized target nuclei elastically and measure parityviolating asymmetry
- Relatively clean method to study nuclear structure in terms of theoretical uncertainties compared to strong probe measurements.

 $A_{pv} = \frac{d\sigma/d\Omega_{+} - d\sigma/d\Omega_{-}}{d\sigma/d\Omega_{+} + d\sigma/d\Omega_{-}} \approx \frac{G_F Q^2 |Q_W|}{4\pi\alpha\sqrt{2}Z} \frac{F_W(Q^2)}{F_{ch}(Q^2)}$

Facility and Apparatus

Continuous Electron Beam Accelerator Facility

Reprinted with the full permission of AIP publishing from C. H. Rode. Jefferson Lab 12 GeV CEBAF upgrade. AIP Conf. Proc., 1218(1):26–33, Apr. 2010.

CREX schematic

Reprinted with the full permission from C. Gal. New precision measurements of the neutral weak form factor of 208Pb. In 2020 Fall Meeting of the APS Division of Nuclear Physics. American Physical Society, Oct.

2020. https://prex.jlab.org/cgi-bin/DocDB/private/ ShowDocument?docid=473.

Analysis

Measure raw asymmetry from chargenormalized detector yields

Apply helicity-correlated beam property corrections to get corrected asymmetry

Apply background and polarization corrections. Account for acceptance.

Add in blinding factor

Corrections	Absolute[ppb]	Relative[%]
Polarization	382 +/- 13	14.4 +/- 0.5
Beam Asymmetry	68 +/- 7	2.5 +/- 0.3
Charge Correction	112 +/- 1	4.2 +/- 0.0
⁴⁰ Ca impurities	10 +/- 9	0.4 +/- 0.3
3.831 MeV (2 ⁺) inelastic	-35 +/- 19	-1.3 +/- 0.7
4.507 MeV (3 ⁻) inelastic	-0.3 +/- 10	0 +/- 0.4
5.370 MeV (3 ⁻) inelastic	-1.5 +/- 4	-0.1 +/- 0.1
Transverse asymmetry	0 +/- 13	0 +/- 0.5
Spectrometer Re-scattering	0 +/- 0.5	0 +/- 0.0
Detector Non-linearity	0 +/- 6.7	0 +/- 0.2
Acceptance	0 +/- 24	0 +/- 0.9

Final Result: A_{PV} = 2658.6 ± 106.07 (stat) ± 39.51 (syst) ppb Total Uncertainty (Systematic+Statistical) ~ 4.3%

Key Achievements

- Best precision on polarization measurement till date.
- Three independent techniques used for beam corrections (Regression, dithering and lagrange multiplier) that agree across 3-parts of the data set.
- Corrected asymmetry across different timescales demonstrate good statistical behavior and consistency.

Compton and Moller polarimeter results

Beam corrected (but still blinded) Asymmetries

Source: Chandan Ghosh, UMass Amherst

Preliminary Interpretations

Determination of weak form factor

Source: C. Horowitz, Indiana University

CREX supports models that predict thin weak skin

Conclusion and Future Outlook

CREX Results

- A_{PV} = 2658.6 ± 106.07 (stat) ± 39.51 (syst) ppb
- F_w~0.1297 ± 0.0055 (Preliminary)
- $\Delta R_{Wskin} \simeq \pm 0.029$ fm (Preliminary)

With additional future measurements at MREX, the model dependence from surface thickness assumption can be reduced.

CREX is consistent with models predicting thin neutron skin unlike prior sister experiment PREX.

The same models may not be able to explain heavy nuclear region dominated by volume effects and the medium mass region dominated by surface effects. This needs to be confirmed with further theory analysis.

CREX constraint on ab initio calculations still valuable in the medium mass scale.

https://prex.jlab.org/cgi-bin/DocDB/private/

ShowDocument?docid=473

Contribution Acknowledgements

Students: Devi Adhikari, Devika Bhatta Pathak, Quinn Campagna, Yufan Chen, Cameron Clarke, Catherine Feldman, Iris Halilovic, Siyu Jian, Eric King, Carrington Metts, Marisa Petrusky, Amali Premathilake, Victoria Owen, Robert Radloff, Sakib Rahman, Ryan Richards, Ezekiel Wertz, Tao Ye, Adam Zec, Weibin Zhang

Post-docs and Run Coordinators: Rakitha Beminiwattha, Juan Carlos Cornejo, Mark-Macrae Dalton, Ciprian Gal, Chandan Ghosh, Donald Jones, Tyler Kutz, Hanjie Liu, Juliette Mammei, Dustin McNulty, Caryn Palatchi, Sanghwa Park, Ye Tian, Jinlong Zhang

Spokespeople: Kent Paschke, Krishna Kumar, Robert Michaels, Paul A. Souder, Guido M. Urciuoli

Thanks to Hall A techs, Machine Control, Yves Roblin, Jay Benesch and other Jefferson Lab staff for their support.

Thanks to Brendan Reed and C. Horowitz for theoretical interpretations.

Backup Slides

Thanks to Chandan Ghosh, UMass Amherst

FIG. 3. The difference in electromagnetic charge form factor minus the calculated weak charge form factor result from a family of relativistic and non-relativistic DFT models for CREX versus that of PREX. The model calculation for both experiments' results are plotted, and the values consistent with the experimental results are shown in the red (PREX) and blue (CREX) bands. The yellow ellipses show the 1σ and 90% confidence levels of the overlap region for the two experiment results.

PREX/CREX beam time and systematic goal

	PF CF	REX - 25+10 days, 0.06fm REX - 35+10 days, 0.02fm			
PREXI		PREXII		CREX	
E = 1.06 GeV, 70 uA		E = 0.95 GeV, 70 uA		E = 2.18 GeV, 150 uA	
A _{pv} = 0.6 ppm;		A_{pv} = 0.6 ppm; Rate ~ 2.2 GHz		A _{pv} = 2 ppm; Rate ~ 27 MHz	
Charge Normalization	0.2%	Charge Normalization	0.1%	Charge Normalization	0.04%
Beam Asymmetries	1.1%	Beam Asymmetries	1.1%	Beam Asymmetries	0.26%
Detector nonlinearity	1.2%	Detector nonlinearity	0.5%	Detector nonlinearity	0.25%
Transverse Asym	0.2%	Transverse Asym	0.2%	Transverse Asym	0.48%
Polarization	1.3%	Polarization	1.1%	Polarization	0.49%
Inelastic Contribution	<0.1%	Inelastic Contribution	<0.1%	Inelastic Contribution	0.81%
Effective Q ²	0.5%	Effective Q ²	0.4%	Effective Q ²	0.9%
Total	2.1%	Total	2%	Total	1.48%

PREXI - Goal achieved - Systematic was under control, limited by statistics

Compton Polarimeter

 $\neg \neg$

MOLLER polarimeter

Polarized Source: Precision and Systematic Uncertainty

Any change in the polarized beam, correlated to helicity reversal, can be a potential source for a false asymmetry

Blinded Asymmetries

Data Divided Into 3 Parts

- Part 1: Wien Right Spring 2020 (started Dec 2019)
- Part 2: Wien Left Spring 2020
- Part 3: Wien Right Summer 2020 (ended Sept 2020)

Statistical Test X²/dof = 95.2/120

Probability 95%

Data Overview: Corrected Asymmetry

Final result averaging over all IHWP and 3 Part Wien flip configurations

Lagrange corrected main detector asymmetry results

1: ~Right (In/Out) 2: ~Left (In/Out) 3: =Right (In/Out)

(ppb)	Main det Asym	Weight	Stat Error	Correction
1	2157.68	15.65%	211.77	-179.65
2	1992.07	47.48%	121.58	51.89
3	2160.94	36.88%	137.95	154.37
Net	2080.26		±83.77	$Net = 53.45 \pm 5.44$

Blinded Corrected Asymmetry A_{corr} : 2080.3 ± 83.8 ppb