Proton spectral function from the Ar(e,e'p) cross sections

Artur M. Ankowski SLAC, Stanford University

for the E12-14-012 experiment

JLab Hall A Winter Collaboration Meeting, Feb 10–11, 2022

E12-14-012: (*e*,*e*') and (*e*,*e*'*p*) on Ar and Ti

Aim: Obtaining the experimental input indispensable to construct the argon spectral function, thus paving the way for a reliable estimate of the neutrino cross sections in DUNE. In addition, stimulating a number of theoretical developments, such as the description of final-state interactions. [Benhar *et al.*, arXiv:1406.4080]

	E'_e	$ heta_e$	$ \mathbf{p}' $	$\theta_{p'}$	$ \mathbf{q} $	p_m	E_m
	(GeV)	(deg)	(MeV)	(deg)	(MeV)	(MeV)	(MeV)
kin1	1.777	21.5	915	-50.0	865	50	73
kin2	1.716	20.0	1030	-44.0	846	184	50
kin3	1.799	17.5	915	-47.0	741	174	50
kin4	1.799	15.5	915	-44.5	685	230	50
kin5	1.716	15.5	1030	-39.0	730	300	50

$$E_e = 2.222 \text{ GeV}$$

Previous results

- Inclusive cross sections for C and Ti [Dai et al., PRC 98, 014617 (2018)]
- Inclusive cross section for Ar [Dai *et al.*, PRC 99, 054608 (2019)]
- Inclusive cross section for AI-7075, A-, y-,ψ-scaling of all (e,e') data [Murphy et al., PRC 100, 054606 (2019)]

• Exclusive Ar & Ti cross sections for a single kinematics, $p_m \sim 50-60$ MeV, $E_m \sim 50-70$ MeV [Gu *et al.*, PRC 103, 034604 (2021)]

This analysis: extraction of the spectral function

Universal property of the nucleus, independent of the interaction.

Missing momentum \mathbf{p}_m and missing energy E_m

(e,e'p) cross section

Analysis procedure

- 1) Extract of the (*e*,*e*'*p*) cross section
- 2) Using σ_{cc1} of de Forest and nuclear transparency, obtain the reduced cross sections as a function of (a) p_m and (b) E_m .
- 3) Find the parameters of the spectral function (*i.e.*, spectroscopic factors) from the fits to the reduced cross sections as a function of p_m .
- 4) Using the priors from Step 3), find the parameters of the spectral function (*i.e.*, spectroscopic factors, peak positions, distribution widths) from the fits to the reduced cross sections as a function of E_m .

Test spectral function: 80% mean-field + 20% *NN* correlations

Mean-field part of the spectral function

Mean-field part of the spectral function

lpha	S_{lpha}	$E_{\alpha} ({\rm MeV})$
$1d_{3/2}$	1.6	12.53
$2s_{1/2}$	1.6	12.93
$1d_{5/2}$	4.8	18.23
$1p_{1/2}$	1.6	28.0
$1p_{3/2}$	3.2	33.0
$1s_{1/2}$	1.6	52.0

- $1d_{3/2}$: from the mass difference between ⁴⁰Ar and ³⁹Cl + *p* + *e*
- 2s_{1/2} and 1d_{5/2}: from the dominant contribs. in the past ⁴⁰Ar(d, ³He)³⁹Cl measurements
- Lower levels were not probed with deuteron
- Assumed Gaussian distribution

Correlated part of the spectral function

Ciofi degli Atti and Simula, PRC 53, 1689 (1996)

- Correlated nucleons form quasi-deuteron pairs, with the relative momentum distributed as in deuteron.
- NN pairs undergo CM motion (Gaussian distrib.)
- Excitation energy of the (A 1)-nucleons is their kinetic energy plus the pn knockout threshold

*p*_m fit results

		w/ corr.	w/o corr.
α	N_{lpha}		S_{lpha}
$1d_{3/2}$	2	0.78 ± 0.05	0.78 ± 0.09
$2s_{1/2}$	2	2.07 ± 0.07	2.10 ± 0.10
$1d_{5/2}$	6	2.27 ± 0.04	2.27 ± 0.08
$1p_{1/2}$	2	2.72 ± 1.23	2.72 ± 0.34
$1p_{3/2}$	4	3.36 ± 0.04	3.53 ± 0.06
$1s_{1/2}$	2	2.54 ± 0.04	2.65 ± 0.02
corr.	0	0.48 ± 0.01	excluded
$\sum_{\alpha} S_{\alpha}$		14.48 ± 1.24	14.05 ± 0.38
<u>d</u> .o.f.		$1,\!132$	1,133
$\chi^2/d.o.f.$		1.9	3.2

In the p_m fit, only deeply bound states are sensitive to the correlated spectral function.

E_m fit results

		all priors	w/o p_m	w/o corr.
α	N_{lpha}		S_{lpha}	
$1d_{3/2}$	2	0.89 ± 0.11	1.42 ± 0.20	0.95 ± 0.11
$2s_{1/2}$	2	1.72 ± 0.15	1.22 ± 0.12	1.80 ± 0.16
$1d_{5/2}$	6	3.52 ± 0.26	3.83 ± 0.30	3.89 ± 0.30
$1p_{1/2}$	2	1.53 ± 0.21	2.01 ± 0.22	1.83 ± 0.21
$1p_{3/2}$	4	3.07 ± 0.05	2.23 ± 0.12	3.12 ± 0.05
$1s_{1/2}$	2	2.51 ± 0.05	2.05 ± 0.23	2.52 ± 0.05
corr.	0	3.77 ± 0.28	3.85 ± 0.25	excluded
$\sum_{\alpha} S_{\alpha}$		17.02 ± 0.48	16.61 ± 0.57	14.12 ± 0.42
d.o.f		206	231	232
χ^2 /d.o.f.		1.9	1.4	2.0

	E_{α} (I	MeV)	$\sigma_{\alpha} \ (MeV)$		
α	w/ priors	w/o priors	w/ priors	w/o priors	
$1d_{3/2}$	12.53 ± 0.02	10.90 ± 0.12	1.9 ± 0.4	1.6 ± 0.4	
$2s_{1/2}$	12.92 ± 0.02	12.57 ± 0.38	3.8 ± 0.8	3.0 ± 1.8	
$1d_{5/2}$	18.23 ± 0.02	17.77 ± 0.80	9.2 ± 0.9	9.6 ± 1.3	
$1p_{1/2}$	28.8 ± 0.7	28.7 ± 0.7	12.1 ± 1.0	12.0 ± 3.6	
$1p_{3/2}$	33.0 ± 0.3	33.0 ± 0.3	9.3 ± 0.5	9.3 ± 0.5	
$1s_{1/2}$	53.4 ± 1.1	53.4 ± 1.0	28.3 ± 2.2	28.1 ± 2.3	
corr.	24.1 ± 2.7	24.1 ± 1.7			

E_m fit results

Data from different kinematics are consistent within uncertainties.

Test spectral function

Extracted spectral function

					$\frac{40}{20}$	Ca
k	proton e	energy	levels		p's	n's
	Ar		Ca		1	
	12.53	1d3/2	8.5			
	12.92	2s1/2	11.0		00-	
	18.23	1d5/2	15.7			- • • • • • • • • • • •
	28.8	1p1/2	29.8			- 🥥 🥥
	33.0	1p3/2	34.7			
	53.3	1s1/2	53.6			
Thi	is analysis		Volkov <i>et a</i> SJNP 52, 8	al. 848 (1990)	••	- 🥥 🥥

Occupation probability

Kramer et al. [Ph.D. thesis (1990)]: ~340-440-MeV electron beam at NIKHEF-K

Yasuda et al. [Ph.D. thesis (2012)]: 392-MeV polarized proton beam at RCNP

Occupation probability

52-MeV polarized [Mairle *et al.*, NPA **565**, 543 (1993); *E*_x < 9 MeV] and unpolarized [Doll *et al.*, NPA **230**, 329 (1974); **129**, 469 (1969); *E*_x < 7 MeV] deuteron beam at Karlsruhe

Kramer *et al.* [NPA **679**, 267 (2001)]: reanalysis of (d,³He) experiments, $S_{\alpha} \rightarrow S_{\alpha}/1.5$

Directions for future improvements

- 2D analysis
- Final-state interactions
- Wave functions
- Correlated part of the spectral function

Summary

- The first, exploratory analysis of the full dataset.
- Reasonable parametrization of the spectral function of ⁴⁰Ar is found.
- Comparison with past results shows strengths and limitations.
- Separation of individual contributions requires improved analysis. Numerous theoretical developments are necessary.

Backup

Realistic description of the nucleus

Fermi gas vs. spectral function

Realistic description of the nucleus

A.M.A., O. Benhar & M. Sakuda, PRD 91, 033005 (2015)

Occupation probability

	This analysis	⁴⁰ Ca(e,e'p) Kramer et al.	⁴⁰ Ca(\vec{p} ,2 p) Yasuda <i>et al.</i>
1d3/2 + 2s1/2	0.65 ± 0.05	0.64 ± 0.05	0.61 ± 0.04
1d3/2	0.45 ± 0.06	0.65 ± 0.07	0.65 ± 0.05
2s1/2	0.86 ± 0.07	0.64 ± 0.06	0.53 ± 0.04
1d5/2	0.59 ± 0.04	0.83 ± 0.05	0.85 ± 0.09
1p1/2 + 1p3/2	0.77 ± 0.04		0.49 ± 0.07
1s1/2	1.25 ± 0.03		0.89 ± 0.09

Kramer et al. [Ph.D. thesis (1990)]: ~340–440-MeV electron beam at NIKHEF-K

Yasuda et al. [Ph.D. thesis (2012)]: 392-MeV polarized proton beam at RCNP

Occupation probability

	This analysis	⁴⁰ Ar(\vec{d} , ³ He) Mairle <i>et al.</i>	⁴⁰ Ar(<i>d</i> , ³ He) Doll <i>et al.</i>
1d3/2 + 2s1/2	0.65 ± 0.05	0.62 ± 0.13	0.66 ± 0.14
1d3/2	0.45 ± 0.06	0.72 ± 0.22	0.77 ± 0.23
2s1/2	0.86 ± 0.07	0.51 ± 0.15	0.56 ± 0.17
1d5/2	0.59 ± 0.04	0.78 ± 0.23	0.54 ± 0.16

Mairle et al. [NPA 565, 543 (1993)]: 52-MeV polarized deuteron beam at Karlsruhe

Doll *et al.* [NPA **230**, 329 (1974); **129**, 469 (1969)]: 52-MeV deuteron beam at Karlsruhe ($E_x < 7$ MeV vs. 9 MeV in Mairle *et al.*, the 1d5/2 shell not fully probed)

Kramer *et al.* [NPA **679**, 267 (2001)]: reanalysis of (d,³He) experiments, $S_{\alpha} \rightarrow S_{\alpha}/1.5$

Missing momentum \mathbf{p}_m and missing energy E_m

In the absence of final state interactions $-\mathbf{p}_{A-1} = \mathbf{p}_m$ initial proton momentum; $p_m \equiv |\mathbf{p}_m|$ $E_{A-1}^* = \sqrt{(M_A - M + E_m)^2 + \mathbf{p}_m^2}$, with excitation energy $E_m - E_{\text{thr}}$