
Hall A Analysis Software & Computing Update

Ole Hansen

Jefferson Lab

Hall A Collaboration Meeting
February 10, 2022

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 1 / 16

Podd Status

Current release: 1.7.0 (16 Nov 2021)
▶ Many new features (already presented at previous meetings)
▶ Additional improvements and bugfixes based on early SBS data taking
▶ Significant speedup, primarily in decoder and database
▶ Improved CODA 3 support
▶ Dynamic raw data event buffer size
▶ PID calculation based on Bayesian likelihoods
▶ Requires C++11 compiler and ROOT 6. Installed in counting house and on the farm.

Priority development: 2.0-devel (Summer 2022, delayed because of SBS work)
▶ Multithreading
▶ Will benefit SBS and Hall C, primarily for online replay
▶ Requires C++17 (e.g. gcc 9+, available on ifarm)
▶ Existing code will need minor modifications

Auxiliary development: 1.8-devel (if time permits)
▶ Add small new features missed in 1.7
▶ Maintain system requirements and API of version 1.7 as much as possible

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 2 / 16

Podd: Profile-Based Code Optimization

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 3 / 16

Podd Source Code & Documentation

JLab Redmine GitHub

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 4 / 16

Podd: Building with CMake
Prerequisites:

Install ROOT (ensure root-config is in PATH, or set $ROOTSYS)
▶ Farm: run setroot_CUE.csh. RHEL: install from EPEL. macOS: install from Homebrew.
▶ See also https://redmine.jlab.org/projects/podd/wiki/ROOT_Installation_Guide

Ensure you have CMake ≥ 3.5 (cmake --version. cmake3 on RedHat)

Building & Installing Podd with CMake ≥ 3.15
$ git clone https://github.com/JeffersonLab/analyzer.git
$ cmake -S analyzer -B analyzer-build [-DCMAKE_INSTALL_PREFIX=/some/dir]
$ cmake --build analyzer-build [-j4]
$./analyzer-build/apps/analyzer
$ [cmake --install analyzer-build]
$ [/some/dir/bin/analyzer]

Notes:
Installing recommended (cmake --install): Set CMAKE_INSTALL_PREFIX

Will phase out aging SCons build system (too many limitations)
Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 5 / 16

https://redmine.jlab.org/projects/podd/wiki/ROOT_Installation_Guide

Pre-Installed Podd

farm/ifarm (works in Counting House, too)
$ module use /group/halla/modulefiles
$ module load analyzer
$ analyzer --version
Podd 1.7.0 Linux-3.10.0-1160.31.1.el7.x86_64-x86_64 git @e26c21d ROOT 6.22/06

Counting House (local installation, faster, safer)
$ module use /adaqfs/apps/modulefiles
$ module load analyzer
$ analyzer --version
Podd 1.7.0 Linux-3.10.0-1160.31.1.el7.x86_64-x86_64 git @e26c21d ROOT 6.24/06

The SDK is located in $ANALYZER/../src/SDK/

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 6 / 16

Podd 2.0

Event-based parallelization/multithreading
▶ Important for online replay
▶ Reduced memory footprint compared to multiple individual jobs
▶ Requires thread safe user code (→ only const or protected globals, statics)

I/O improvements
▶ Output system upgrade (full set of data types, object variables) — largely complete
▶ TBD: HIPO or PODIO output file format support
▶ TBD: EVIO 6 input format support (HIPO-like raw data files)
▶ Goal: Make output easily usable with Python and Julia tools (e.g. uproot, UnROOT)

ETA: This summer. Delayed because of work on SBS.

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 7 / 16

https://pypi.org/project/uproot/
https://github.com/tamasgal/UnROOT.jl

Podd Parallel Processing Prototype

https://github.com/hansenjo/parallel

Small standalone toy analyzer with
hand-crafted multithreading (std::thread)
Mimics main components of Podd (e.g.
decoder, analysis variables, output)
A few example “detectors” included whose
processing is intended to burn CPU cycles
Exploring migration to TBB (Intel Thread
Building Blocks)

Output
Thread

Output
File

Analysis Thread 1

Work
Queue

Analysis Thread 2

Analysis Thread 3

Analysis Thread N

Results
Queue

Thread Pool

Input
Thread

Input
File

Free
Queue

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 8 / 16

https://github.com/hansenjo/parallel

Parallel Podd Performance Scaling Benchmark
Benchmark processing rate as function of number of analysis threads
Run on aonl1 (16 hyperthreaded cores, Intel Xeon E5-2650 v2 @ 2.60GHz), RHEL 7.9, idle
Admittedly extreme example: maximally CPU-bound (negligible I/O & memory use)

0 5 10 15 20 25 30 35
Number of analysis threads

0

50

100

150

200

250

300

350

400

An
al

ys
is

Ra
te

 (H
z)

88.4% eff

78.2% eff

Parallel Podd Prototype Performance Scaling
Ideal rate
Actual rate

0 5 10 15 20 25 30 35
Number of analysis threads

0

1

2

3

4

5

6

M
em

or
y

us
ag

e
(M

B)

0.1 MB/thread

Parallel Podd Prototype Memory Usage

Multiprocess memory usage (est.)
Multithreaded memory usage (meas.)
Fit

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 9 / 16

Remaining Podd Limitations

Separated Data and Algorithms

Data Producer

Input
Data 3

Input
Data 1

Input
Data 2

Output
Data 1

Output
Data 2

Config

Algorithms and Data are closely coupled
▶ More work to add new algorithms
▶ Difficult to stream event data only

No native event data I/O and API
▶ Podd cannot take its own output as input
▶ One-pass analysis only:

EVIO raw data → ROOT trees + histograms
▶ Major limitation with large data sets

Addressing these would require complete re-write

Track
Cand-
idates

Track
Tests

Track
Finder

Tracker
Clusters

Calo
Clusters

GEM Hit
Cluster
Finder

Tracker
Hits

Calo
Cluster
Finder

Calo
Hits

Track
Fitter

Conf=A

Fitted
Tracks

“A”

Track
Fitter

Conf=B

Fitted
Tracks

“B”

Track
Cand-
idates

Analysis Chain Example

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 10 / 16

SBS Online Computing

Traditional CODA3 DAQ for GMn: Single Event
Builder host (new high-performance server),
demonstrated ≥ 1 GB/s peak raw data rate

Plan to use CODA’s scalable event stream
parallelization to achieve up to ≈ 3 GB/s

Online replay on aonlX systems (128 threads),
2014-vintage servers (to be upgraded)

SBS is the first experiment to take full
advantage of these systems, running
100 automated parallel analysis jobs.

Online replay typically able to keep up with
incoming data.

New CODA Event Builder Machines

Full SBS DAQ Configuration
ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

ROC

DC
(adaq1)

DC
(adaq2)

SEB ET ER
50 TB

RAID-6
> 1 GB/s

SEB ET ER
50 TB

RAID-6
> 1 GB/s

SEB ET ER
50 TB

RAID-6
> 1 GB/s

Monitor &
Analysis

To
MSS
via

40 Gbps
uplink

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 11 / 16

SBS-GMn Data Volume in Comparison

2021-08
2021-09

2021-10
2021-11

2021-12
2022-01

2022-02

Month

0

100

200

300

400

500

600

700

Ra
w

Da
ta

 (T
B)

JLab Raw Data to Tape Fall 2021
Hall A
Hall B
Hall C
Hall D

Hall Total
(TB)

A 1,949
B 1,719
C 35
D 1,414

Sum 5,117

Fun fact #1: SBS-GMn took ≈ 5 times
more data in these 6 months than all prior
Hall A experiments combined in 25 years

Fun fact #2: The entire SBS program
expects to accumulate ≈ 25 PB raw data
through 2024

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 12 / 16

Scientific Computing Resources

Farm/ifarm upgraded to CentOS 7.9. RHEL 8 clones being evaluated.
Farm batch system has been transitioned to slurm and swif2. Legacy Auger/swif commands will
stop working March 1, 2022. See https://scicomp.jlab.org/docs/FarmUsersGuide.
Current farm resources

▶ Disk: Lustre: 4.1 PB, Work: 1.4 PB (recent upgrade).
▶ CPU: 14192 cores / 28384 threads. Total capacity 249 M-core-hours/year
▶ Almost half the capacity is on AMD EPYC 7502 64C/128T systems (speed demons!)
▶ 6 nodes with Nvidia TitanRTX GPUs dedicated for ML applications

Mass storage system (as of Feb 2022)
▶ Throughput ≈ 8 GB/s (20 LTO-8 drives, uncompressed, theoretical)
▶ ≈ 150 PB capacity (LTO-8, uncompressed), ≈ 85 PB used (23.4 raw, 26.7 rawdup).
▶ Significant capacity headroom (more frames, LTO-9) with current silo, up to ≈ 325 PB.

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 13 / 16

https://scicomp.jlab.org/docs/FarmUsersGuide

New Counting House Desktop Systems

Clean separation of desktops and servers. →
increased reliability and stability.
Platform for browsers, editors, slow controls
(some), remote logins
Extensive use of VNC servers/clients, very
successful
No significant issues. Small updates planned
(EPICS etc.)
Feedback welcome (ole@jlab.org)

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 14 / 16

mailto:ole@jlab.org

AI-Assisted Online Monitoring (Hydra)

EPSCI group has offered support to
deploy the Hall D Hydra system in
Hall A for automated data quality
monitoring.
Will tap into online histograms
generated by panguin.
Currently being set up. Test version
expected ≈ March–April.
One-time human review (“labeling”)
required. Volunteers welcome.

Hydra
A.I. Data Quality monitoring

● Traditionally, scientists working shifts must frequently scan
dozens of plots to ensure the quality of incoming data

● Plots are themselves just pictures. A.I.’s are now very good at
classifying pictures.

● This is applied A.I. since it uses models already designed for
image classification such as Google’s Inception_v3 network

● Between 93 and 99% accurate when compared to expert
labeling

○ Has found mislabeling by human experts indicating an
irreducible error that is expert dependent

● Currently capable of analyzing an image in under 200ms
○ This equates to a throughput in excess of 10,000 images

a day when running. (far more than a human)A portion of the
real-time web
dashboard of Hydra
inference

Experimental Physics Software
and Computing Infrastructure

(slide from David Lawrence, Jan 2021)

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 15 / 16

Summary

“Podd” analysis software continues to be actively maintained and used by current
experiments in Halls A & C.

Significant modernization work (multithreading etc.) underway.

The large data volumes from SBS are putting Hall A in the same league as Halls B & D
in terms of computing resource needs. This will require careful planning going forward.

Experience with the upcoming SBS mass replays on the farm will inform future direction
of the Hall A software.

Ole Hansen (Jefferson Lab) Hall A Software & Computing Update Hall A Collab Meeting, 10 Feb 2022 16 / 16

