Status in the Lattice QCD Calculation of TMDs from Quasi-TMDs

Correlations in Partonic and Hadronic Interactions (CPHI-2022) Duke University, Durham Mar. 7-10, 2022

YONG ZHAO MAR 10, 2022

Outline

Relation between Quasi TMD and TMD

Lattice QCD calculation of the Collins-Soper kernel

Soft function from lattice QCD

Outlook

Outline

Relation between Quasi TMD and TMD

Lattice QCD calculation of the Collins-Soper kernel

Soft function from lattice QCD

Outlook

3D Tomography of the Proton (Hadrons)

The Electron-Ion Collider

Detector Locati

Tomography in the 3D momentum space

Unpolarized quark TMD

I. Scimemi and A. Vladimirov, JHEP 06 (2020).

Quark Sivers function

Cammarota, Gamberg, Kang et al. (JAM Collaboration), PRD 102 (2020).

TMD definition

• Beam function:

Hadronic matrix element

• Soft function :

Vacuum matrix element

$$f_i^{\text{TMD}}(x, \overrightarrow{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{\text{UV}} \lim_{\tau \to 0} \frac{B_i}{\sqrt{S^q}}$$

Collins-Soper scale

Quasi TMD in the LaMET formalism

• Quasi TMD:

$$\tilde{f}_{i/h}(x, \overrightarrow{b}_T, \mu, \tilde{\zeta}, x \tilde{P}^z, \tilde{\eta}) = \lim_{\tilde{P}^z \gg m_N} \lim_{a \to 0} Z_{uv} \frac{\tilde{B}_{i/h}}{\sqrt{\tilde{S}^q(a, 2y_n, 2y_B...)}}$$

$$\tilde{\zeta} = x^2 m_N^2 e^{2(y_{\tilde{P}} + y_B - y_n)}$$

• Factorization relation:

$$\lim_{\tilde{\eta}\to\infty} \tilde{f}_{q/h}(x,\vec{b}_T,\mu,\tilde{\zeta},x\tilde{P}^z,\tilde{\eta}) = C(x\tilde{P}^z,\mu)\exp\left[\frac{1}{2}\gamma_{\zeta}^q(\mu,b_T)\ln\frac{\tilde{\zeta}}{\zeta}\right]f_{i/h}(x,\vec{b}_T,\mu,\tilde{\zeta}) + \mathcal{O}(y_{\tilde{P}}^{-k}e^{-y_{\tilde{P}}})$$

Matching coefficient

Collins-Soper kernel

No mixing between quarks of different flavors and between gluon and singlet quarks;

Matching is spin independent.

- Vladimirov and Schäfer, PRD 101 (2020);
- Ebert, Schindler, Stewart and YZ, JHEP 09 (2020);
- Ji, Liu, Schäfer and Yuan, PRD 103 (2021).

See I. Stewart's talk on the proof.

- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019);
- Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037;
- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Vladimirov and Schäfer, PRD 101 (2020);
- Ebert, Schindler, Stewart and YZ, 2201.08401.

• Quasi TMD:

$$\tilde{f}_{i/h}(x, \overrightarrow{b}_T, \mu, \tilde{\zeta}, x \tilde{P}^z, \tilde{\eta}) = \lim_{\tilde{P}^z \gg m_N} \lim_{a \to 0} Z_{uv} \frac{\tilde{B}_{i/h}}{\sqrt{\tilde{S}^q(a, 2y_n, 2y_B...)}}$$

$$\tilde{\zeta} = x^2 m_N^2 e^{2(y_{\tilde{P}} + y_B - y_n)}$$

• Factorization relation:

$$\lim_{\tilde{\eta}\to\infty} \tilde{f}_{q/h}(x,\vec{b}_T,\mu,\tilde{\zeta},x\tilde{P}^z,\tilde{\eta}) = C(x\tilde{P}^z,\mu)\exp\left[\frac{1}{2}\gamma_{\zeta}^q(\mu,b_T)\ln\frac{\tilde{\zeta}}{\zeta}\right]f_{i/h}(x,\vec{b}_T,\mu,\tilde{\zeta}) + \mathcal{O}(y_{\tilde{P}}^{-k}e^{-y_{\tilde{P}}})$$

Matching coefficient

Not directly calculable due to the soft function

♦

No mixing between quarks of different flavors and between gluon and singlet quarks;

Matching is spin independent.

- Vladimirov and Schäfer, PRD 101 (2020);
- Ebert, Schindler, Stewart and YZ, JHEP 09 (2020);
- Ji, Liu, Schäfer and Yuan, PRD 103 (2021).

Collins-Soper kernel

See I. Stewart's talk on the proof.

- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019);
- Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037;
- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Vladimirov and Schäfer, PRD 101 (2020);
- Ebert, Schindler, Stewart and YZ, 2201.08401.

• Quasi TMD:

$$\tilde{f}_{i/h}(x,\vec{b}_T,\mu,\tilde{\zeta},x\tilde{P}^z,\tilde{\eta}) = \lim_{\tilde{P}^z \gg m_N} \lim_{a \to 0} Z_{\rm uv} \frac{\tilde{B}_{i/h}}{\sqrt{\tilde{S}^q(a,2y_n,2y_B\dots)}}$$

 $\tilde{\zeta} = x^2 m_N^2 e^{2(y_{\tilde{P}} + y_B - y_n)}$

• Factorization relation:

• Quasi TMD:

$$\tilde{f}_{i/h}(x,\vec{b}_T,\mu,\tilde{\zeta},x\tilde{P}^z,\tilde{\eta}) = \lim_{\tilde{P}^z \gg m_N} \lim_{a \to 0} Z_{uv} \frac{\tilde{B}_{i/h}}{\sqrt{\tilde{S}^q(a,2y_n,2y_B...)}}$$

 $\tilde{\zeta} = x^2 m_N^2 e^{2(y_{\tilde{P}} + y_B - y_n)}$

Factorization relation:

Directly calculable on the lattice

Reduced soft function: $g_S^q(b_T, \mu) = \sqrt{S^r(b_T, \mu)}$

Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020).

Outline

Relation between Quasi TMD and TMD

Lattice QCD calculation of the Collins-Soper kernel

Soft function from lattice QCD

Outlook

$$\gamma_{\zeta}^{q}(\mu, b_{T}) = \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \frac{C_{\text{ns}}^{\text{TMD}}(\mu, xP_{2}^{z}) \tilde{B}_{\text{ns}}^{\text{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{1}^{z})}{C_{\text{ns}}^{\text{TMD}}(\mu, xP_{1}^{z}) \tilde{B}_{\text{ns}}^{\text{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{2}^{z})} + \text{power corrections}$$

Studying CS kernel through quasi-TMDs suggested in

• Ji, Sun, Xiong and Yuan, PRD91 (2015);

The concrete formalism first derived in

- Ebert, Stewart and YZ, Phys.Rev.D 99 (2019).
- Does not depend on the external hadron state, could be calculated with pion TMD or Wave function (vacuum to pion amplitude) for simplicity;
 - Shanahan, Wagman and YZ, PRD 102 (2020);
 - Ebert, Stewart and YZ, Phys.Rev.D 99 (2019);
 - Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020).
- One can also calculate ratios of TMDs with different spin structures.

$$\gamma_{\zeta}^{q}(\mu, b_{T}) = \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \frac{C_{\text{ns}}^{\text{TMD}}(\mu, xP_{2}^{z}) \tilde{B}_{\text{ns}}^{\text{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{1}^{z})}{C_{\text{ns}}^{\text{TMD}}(\mu, xP_{1}^{z}) \tilde{B}_{\text{ns}}^{\text{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{2}^{z})} + \text{power corrections}$$

Studying CS kernel through quasi-TMDs suggested in

• Ji, Sun, Xiong and Yuan, PRD91 (2015);

The concrete formalism first derived in

- Ebert, Stewart and YZ, Phys.Rev.D 99 (2019).
- Does not depend on the external hadron state, could be calculated with pion TMD or Wave function (vacuum to pion amplitude) for simplicity;
 - Shanahan, Wagman and YZ, PRD 102 (2020);
 - Ebert, Stewart and YZ, Phys.Rev.D 99 (2019);
 - Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020).
- One can also calculate ratios of TMDs with different spin structures.

The idea of using ratios has been used in the calculation of *x*-moments of TMDs:

Musch, Hägler, Engelhardt, Negele, Schäfer, et al., EPL88 (2009), PRD83 (2011), PRD85 (2012), PRD93 (2016), arXiv:1601.05717, PRD96 (2017)

 \mathcal{X}

Simulation of bare quasi beam function:

 $f(b_T,\mu) = \frac{d \, 1_f \overline{\mathrm{MS}}}{\ln d p_1^z / p_2^z} (\ln \frac{C_{\mathrm{TMD}}^{\overline{\mathrm{MS}}}(\mu, x P_2^z) \int db^z e^{ib^z x p_1^z} \widetilde{B}_q^{\overline{\mathrm{MS}}}(b^z, b_T, \eta, \mu, p_1^z)}{C_{\mathrm{TMD}}^{\overline{\mathrm{MS}}}(\mu, x p_1^z) \int db^z e^{ib^z x p_2^z} \widetilde{B}_q^{\overline{\mathrm{MS}}}(b^z, b_T, \eta, \mu, p_2^z)}$

 $b_T/\eta = 1/(p^z b_T) = M/p^z$

 $m_{\pi} \sim 1.2 \text{ GeV}$

 m_{π}

 $\tilde{B}_{ns}(b^z, \overline{b}_T, a, \eta, P_1^z)$

Lattice renormalization and conversion to MSbar scheme

 $\tilde{Z}'(b^z, \mu, \tilde{\mu})\tilde{Z}_{\text{UV}}(b^z, \tilde{\mu}, a)\tilde{B}_{\text{ns}}(b^z, \overline{b}_T, a, \eta, P_1^z)$

• Nonperturbative Renormalization: \tilde{Z}_{UV}

Cancel linear divergences: $\propto e^{-(2\eta+|b_T|)/a}$

Operator mixing: $\tilde{Z}_{UV}^{\Gamma\Gamma'}(b^z)\tilde{B}^{\Gamma'}(b^z)$

Shanahan, Wagman and YZ, PRD 101 (2020).

• Conversion to MSbar scheme: \tilde{Z}'

For $b^z = 0$, Constantinou, Panagopoulos and Spanoudes, PRD99 (2019); For arbitrary b^z , Ebert, Stewart and YZ, JHEP 03 (2020).

• Fourier transform: extrapolation to ∞ necessary.

$$\int db^z \ e^{ib^z x P_1^z} \ \tilde{Z}'(b^z,\mu,\tilde{\mu}) \tilde{Z}_{\rm UV}(b^z,\tilde{\mu},a) \tilde{B}_{\rm ns}(b^z,\vec{b}_T,a,\eta,P_1^z)$$

Shanahan, Wagman and YZ, PRD 104 (2021).

• Perturbative matching and forming ratios at different P^z : $\gamma_{\zeta}^q(\mu, b_T) = \frac{1}{\ln(P_1^z/P_2^z)}$

 $\times \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{2}^{z}) \int db^{z} \ e^{ib^{z}xP_{1}^{z}} \ \tilde{Z}'(b^{z}, \mu, \tilde{\mu})\tilde{Z}_{\mathrm{UV}}(b^{z}, \tilde{\mu}, a)\tilde{B}_{\mathrm{ns}}(b^{z}, \overrightarrow{b}_{T}, a, \eta, P_{1}^{z})}{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{1}^{z}) \int db^{z} \ e^{ib^{z}xP_{2}^{z}} \ \tilde{Z}'(b^{z}, \mu, \tilde{\mu})\tilde{Z}_{\mathrm{UV}}(b^{z}, \tilde{\mu}, a)\tilde{B}_{\mathrm{ns}}(b^{z}, \overrightarrow{b}_{T}, a, \eta, P_{2}^{z})}$

Current status for the CS kernel calculation

	Lattice setup	Renormalization	Operator mixing	Fourier transform	Matching	Plateau search
SWZ20 PRD 102 (2020) Quenched	a = 0.06 fm, $m_{\pi} = 1.2 \text{ GeV},$ $P_{\text{max}}^z = 2.6 \text{ GeV}$	Yes	Yes	Yes	LO	Yes
LPC20 PRL 125 (2020)	a = 0.10 fm, $m_{\pi} = 547 \text{ MeV},$ $P_{\text{max}}^{z} = 2.11 \text{ GeV}$	N/A	Yes	N/A	LO	N/A
Regensburg/ NMSU 21 JHEP 08 (2021)	a = 0.09 fm, $m_{\pi} = 422 \text{ MeV},$ $P_{\text{max}}^{+} = 2.27 \text{ GeV}$	N/A	No	N/A	NLO	N/A
PKU/ETMC 21 PRL 128 (2022)	a = 0.09 fm, $m_{\pi} = 827 \text{ MeV},$ $P_{\text{max}}^{z} = 3.3 \text{ GeV}$	N/A	No	N/A	LO	N/A
SWZ21 PRD 104 (2021)	a = 0.12 fm, $m_{\pi} = 580 \text{ MeV},$ $P_{\text{max}}^{z} = 1.5 \text{ GeV}$	Yes	Yes	Yes	NLO	Yes

Lattice results on the CS kernel

 $a = 0.12 \text{ fm}, \quad m_{\pi} = 580 \text{ MeV},$

Shanahan, Wagman and YZ, PRD 104 (2021).

 $P_{\text{max}}^z = 1.5 \text{ GeV}$

SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020) Pavia19: A. Bacchetta et al., JHEP 07 (2020)

Discretization and power corrections:

$$\mathcal{O}\left(\frac{b_T}{\tilde{\eta}}, \frac{1}{(xb_T\tilde{P}^z)^2}, \frac{1}{\tilde{P}^z\tilde{\eta}}, \frac{\Lambda_{\text{QCD}}^2}{(x\tilde{P}^z)^2}\right)$$

Lattice results on the CS kernel

$$a = 0.12 \text{ fm}, \quad m_{\pi} = 580 \text{ MeV},$$

Shanahan, Wagman and YZ, PRD 104 (2021).

 $P_{\text{max}}^z = 1.5 \text{ GeV}$

SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020) Pavia19: A. Bacchetta et al., JHEP 07 (2020)

Discretization and power corrections:

$$\mathcal{O}\left(\frac{b_T}{\tilde{\eta}}, \frac{1}{(xb_T\tilde{P}^z)^2}, \frac{1}{\tilde{P}^z\tilde{\eta}}, \frac{\Lambda_{\text{QCD}}^2}{(x\tilde{P}^z)^2}\right)$$

Lattice results on the CS kernel

From A. Vladimirov's talk.

Outline

Relation between Quasi TMD and TMD

Lattice QCD calculation of the Collins-Soper kernel

Soft function from lattice QCD

Outlook

Reduced soft function from LaMET

$$\lim_{\tilde{\eta}\to\infty} \frac{\tilde{f}_{i/h}^{\text{naive}}}{g_{\mathcal{S}}^{q}(b_{T},\mu)} = C(x\tilde{P}^{z},\mu) \exp\left[\frac{1}{2}\gamma_{\zeta}^{q}(\mu,b_{T})\ln\frac{(2x\tilde{P}^{z})^{2}}{\zeta}\right] f_{q/h}(x,\vec{b}_{T},\mu,\zeta) + \mathcal{O}(y_{\tilde{P}}^{-k}e^{-y_{\tilde{P}}})$$

Reduced soft function: $S^r(b_T, \mu) = [g_S^q(b_T, \mu)]^2$

Light-meson form factor:

$$F(b_T, P^z) = \langle \pi(-P) | j_1(b_T) j_2(0) | \pi(P) \rangle$$

$$\stackrel{P^z \gg m_N}{=} S_q^r(b_T, \mu) \int dx dx' H(x, x', \mu)$$

$$\times \Phi^{\dagger}(x, b_T, P^z) \Phi(x', b_T, P^z)$$

 $\Phi \text{:} \ensuremath{\text{Quasi-TMD}}$ wave function

$$\tilde{\Phi} = \frac{\langle 0 \,|\, \mathcal{O}(b^{\mu}) \,|\, \pi(P) \rangle}{\sqrt{\tilde{S}_{\text{naive}}^{q}}}$$

Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020).

Reduced soft function from LaMET

• Tree-level approximation:

 $H(x, x', \mu) = 1 + \mathcal{O}(\alpha_s)$

$$F(b_T, P^z) \stackrel{P^z \gg m_N}{=} S_q^r(b_T, \mu) \int dx dx' \Phi^{\dagger}(x, b_T, P^z) \Phi(x', b_T, P^z)$$
$$= S_q^r(b_T) [\tilde{\Phi}(b^z = 0, b_T, P^z)]^2$$

$$\Rightarrow S_q^r(b_T) = \frac{F(b_T, P^z)}{[\tilde{\Phi}(b^z = 0, b_T, P^z)]^2}$$

• Beyond tree-level, it is necessary to obtain *x*-dependence.

First lattice results with tree-level matching

a = 0.09 fm,

 $m_{\pi} = 827 \text{ MeV},$

 $P_{\rm max}^z = 3.3 {\rm ~GeV}$

a = 0.10 fm, $m_{\pi} = 547 \text{ MeV},$ $P_{\text{max}}^{z} = 2.11 \text{ GeV}$

Outlook

Targets for lattice QCD studies:

Observables	Status		
Non-perturbative CS kernel	\checkmark , improving the systematics		
Soft factor	 to be under systematic control 		
Info on spin-dependent TMDs (in ratios)	In progress		
Info on 3D structure, (x, b_T) (in ratios)	In progress		
Proton v.s. pion TMDs, (x, b_T) (in ratios)	In progress		
Flavor dependence of TMDs, (x, b_T) (in ratios)	to be studied		
TMDs and TMD Wave functions, (x, b_T)	In progress		
Gluon TMDs (x, b_T)	to be studied		
Wigner distributions/GTMDs (x, b_T)	to be studied		

Outlook

Systematic uncertainties:

- Pion mass dependence;
- Lattice renormalization: operator mixing, continuum extrapolation;
- Fourier transform (FT);
- NLO (and higher order) matching, resummation;
- Plateau in *x*-space affected by FT and the size of power corrections.

Milestones in 5 years:

- 5-10% level precision for the quark CS kernel for 0.4 GeV $< b_T^{-1} < 2$ GeV;
- 5-10% level precision for ratios of spin-dependent (quark) TMDs;
- Controlling the systematics in the soft function for obtaining the (x, b_T) dependence of (quark) TMDs;
- Extend to the gluons.