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Tomography in the 3D momentum space
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Figure 5.6: Example of extracted (optimal) unpolarized TMD distributions. The color indicates the
relative size of the uncertainty band. Plot from Ref. [324].

and extract ⌫8 and ◆8 . This functional form of 5#% was also used in [323]. It has five free
parameters which grant a sufficient flexibility in G-space as needed for the description of
the precise LHC data. An example of distributions in (G , 1))-plane is presented in Fig. 5.6.
Depending on the value of G, the 1)-behavior apparently changes. The authors of Ref. [324]
observe (the same observation was made in Ref. [251]) that the unpolarized TMD FF gains
a large 1

2
)
-term in the nonperturbative part. It could indicate non-trivial consequences of

hadronization physics, or a tension between collinear and TMD distributions.
5.2.2 Drell-Yan and weak gauge boson production

Drell-Yan lepton pair production via either virtual photon or / boson served in prior
chapters of this handbook to set up the basic notation and concepts for TMD factorization.
Factorized in terms of a convolution of two TMD PDFs from each incoming proton at the
small transverse momentum @) as shown in Eq. (2.29a), Drell-Yan production in unpolarized
proton-proton collisions is one of the most important processes for extracting unpolarized
quark TMD PDFs.

There is a tremendous amount of experimental data for Drell-Yan production, ranging from
lower energy Fermilab experimments to the highest energy data at the LHC. The lower-energy
fixed-target Fermilab data include E605 [333] and E288 [334], while the higher-energy Fermilab
data from collider Tevatron include CDF Run I [335] and Run II [336], and D0 Run I [337] and
Run II [338, 339]. LHC data include forward /-production data from the LHCb experiment at
7 [340], 8 [341], and 13 [342] TeV, /-production data from the CMS experiment at 7 [343] and
8 [344] TeV, /-production data differential in rapidity from the ATLAS experiment at 7 [343]
and 8 [345] TeV, and off-peak (low- and high-mass) Drell-Yan data from the ATLAS experiment
at 8 TeV [345]. Finally, there is also preliminary / production data from the STAR experiment
at 510 GeV.

Earlier description of the small-@) Drell-Yan data from both fixed-target and collider Fer-
milab data within the Collins-Soper-Sterman (CSS) framework has been performed by several
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Figure 5.11: Tomographic scan of the nucleon via the momentum space quark density function
⌧1;@ ⌘

"(G , Æ:) , Æ() , ⇠) defined in Eq. (5.27) at G = 0.1 and ⇠ = 2 GeV. Panels are for D and 3 quarks.
The variation of color in the plot is due to variation of replicas and illustrates the uncertainty of the
extraction. The nucleon polarization vector is along Ĥ-direction. The figures are from Ref. [371].

Figure 5.12: The density distribution ⌧0

?
" of an unpolarized quark with flavor 0 in a proton polarized

along the +H direction and moving towards the reader, as a function of (:G , :H) at &2 = 4 GeV2. The
figures are from Ref. [358].

Figure 5.13: The density distribution of an unpolarized up and down quarks using Sivers functions
from Ref. [18].

Unpolarized quark TMD Quark Sivers function

I. Scimemi and A. Vladimirov, JHEP 06 (2020). Cammarota, Gamberg, Kang et al. (JAM Collaboration), 
PRD 102 (2020).
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• Beam function:

TMD definition
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f TMD
i (x, ⃗b T, μ, ζ) = lim

ϵ→0
ZUV lim

τ→0
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Collins-Soper scale

• Soft function :
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Figure 2.1: Graphs of the Wilson line structure ,@(1⇠ , 0) of the unsubtracted TMD PDF 5
0 (u)
8/? (left) and

of , (1)) for the soft function (
0
=0=1

(right), defined in Eqs. (2.37) and (2.38). The Wilson lines (solid)
extend to infinity in the directions indicated. Adapted from [107].

Here the brackets [· · · ]� denote that the operators inside are considered with an additional
rapidity regulator �, where the details on methods for how this is done are left to Sec. 2.4
below. Note that by Poincaré invariance, the proton matrix element in Eq. (2.37) only depends
on the difference 1

⇠ � 0 = 1
⇠ of the positions of the quark fields. In parts of the literature,

the correlator is defined as #̄0
8
(0),@(0, 1⇠)✏

+

2 #0
8
(1⇠), which thus is related to our convention

by 1
⇠ ! �1⇠. In particular, this also reverses the sign in the Fourier transform.

In Eqs. (2.37) and (2.38) we have 1
⇠ = (0, 1�, b)), and the staple shaped Wilson lines

,@(1⇠, 0) and , (1)) are defined by products of straight line segments,

,@(1⇠, 0) = ,[0 ! �1=1 ! �1=1 + b) ! 1]
= ,=1

(1⇠;�1, 0),
1̂)

�
�1=1 ; 0, 1)

�
,=1

(0⇠; 0,�1) , (2.39)

, (1)) = ,[0 ! �1=1 ! �1=1 + b) ! b) ! �1=0 + b) ! �1=0 ! 0]
= ,=0

(1) ; 0,�1),=1
(1) ;�1, 0),

1̂)

(�1=1 ; 0, 1))
⇥,=1

(0; 0,�1),=0
(0;�1, 0),

1̂)

(�1=0 ; 1) , 0) , (2.40)

with 1̂
⇠
)
= 1

⇠
)
/1) . For later use we also define a generalized version of the first product of

Wilson lines, where we take G
⇠ = (0, G�, x)) and H

⇠ = (0, H�, y)) as the two endpoints,

,@(G⇠, H⇠) = ,[G ! �1=1 + G ! �1=1 + H ! H]
= ,=1

(G⇠;�1, 0),�̂

�
�1=

⇠
1
+ H

⇠
)
; 0, |x) � y) |

�
,=1

(H⇠; 0,�1) , (2.41)

and here �̂⇠ = (G) � H))⇠/|x) � y) |. Here the Wilson line along a generic path ✏ is defined by
the path-ordered exponential

,[✏] = % exp

�8 60

π
✏

dG⇠�20
⇠ (G) C2

�
, (2.42)
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• (Collins) Beam function: 

• (Collins) Soft function:

Quasi TMD in the LaMET formalism
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• Quasi beam function : 

• Quasi soft function
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Figure 3: Wilson line structure of the soft function, eq. (2.8) for ⌘, ⌘̄ < 0. Figure adapted
from ref. [63].

structure, while for the gluon correlator µ, ⌫, ⇢, and � are Lorentz indices. See refs. [40, 67]
for decompositions of different choices of � into independent spin structures for quark
TMDs, and refs. [68, 69] for the decomposition for gluon TMDs. In both cases, h denotes
the struck hadron with momentum P , ✏ is the UV regulator, and ⌘v and � characterize the
longitudinal and transverse segments of the Wilson line, which we illustrate in figure 2.

We define the generic soft vacuum matrix element as

S
R(b, ✏, ⌘v, ⌘̄v̄) =

1

dR

D
0
���Tr

h
S
R(b, ⌘v, ⌘̄v̄)

i���0
E
, (2.8)

where the trace is over color. The color averaging factor dR takes values dq = Nc and
dg = N

2
c � 1. The soft Wilson line is given by

S
R(b, ⌘v, ⌘̄v̄) = W

R


b

2
!

b

2
+ ⌘̄v̄ ! �

b

2
+ ⌘̄v̄ ! �

b

2

! �
b

2
+ ⌘v !

b

2
+ ⌘v !

b

2

�
, (2.9)

as shown in figure 3. S consists of two beam function staples glued together at the points
±b/2; the long sides of the staples run along the ⌘̄v̄ and ⌘v directions. The dependence
on two conjugate directions arises from the appearance of two TMDs in the physical cross
section in eq. (2.2). The length of the soft function path is L = 2|⌘̄v̄|+ 2|⌘v|+ 2|b|.

We define the transverse direction with respect to the plane spanned by P and v, taking
P? = v? = 0. Formally, this can be expressed as b

µ
? = g

µ⌫
? b⌫ with

g
µ⌫
? = g

µ⌫
�

1

1 + ⇣̂2


v
µ
v
⌫

v2
+

P
µ
P

⌫

P 2
+

⇣̂
2

P · v

�
P

µ
v
⌫ + v

µ
P

⌫
��

, ⇣̂ =
v · Pp
|v2|P 2

. (2.10)

We always take v and P to span the same plane as v and v̄. It follows that v? = v̄? = 0.
Our unified notation facilitates the comparison of different TMD schemes, particularly

when we examine their Lorentz invariants. In the most generic case, the beam function

– 8 –

nb
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ṽ

Lorentz boost and L → ∞

L → ∞

! Not directly calculable on the lattice 
due to explicit time dependence

🙂  Directly calculable on the lattice

Ebert, Schindler, Stewart and YZ, 2201.08401. 
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• Quasi TMD:


• Factorization relation:

Relation between quasi TMD and TMD

8

f̃i/h(x, ⃗b T, μ, ζ̃, xP̃z, η̃) = lim
P̃z≫mN

lim
a→0

Zuv
B̃i/h

S̃q(a, 2yn,2yB…)

lim
η̃→∞

f̃q/h(x, ⃗b T, μ, ζ̃, xP̃z, η̃) = C(xP̃z, μ)exp[ 1
2

γq
ζ (μ, bT)ln

ζ̃
ζ ] fi/h(x, ⃗b T, μ, ζ̃) + 𝒪(y−k

P̃ e−yP̃)

ζ̃ = x2m2
Ne2(yP̃+yB−yn)

Collins-Soper kernelMatching coefficient

• Ji, Sun, Xiong and Yuan, PRD91 (2015); 
• Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019); 
• Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037; 
• Ji, Liu and Liu, NPB 955 (2020),  PLB 811 (2020); 
• Vladimirov and Schäfer, PRD 101 (2020); 
• Ebert, Schindler, Stewart and YZ, 2201.08401. 

See I. Stewart’s talk on the proof.
🙂  No mixing between quarks of different 
flavors and between gluon and singlet quarks; 

🙂  Matching is spin independent.
• Vladimirov and Schäfer, PRD 101 (2020); 
• Ebert, Schindler, Stewart and YZ, JHEP 09 (2020); 
• Ji, Liu, Schäfer and Yuan, PRD 103 (2021).
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Relation between quasi TMD and TMD
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f̃i/h(x, ⃗b T, μ, ζ̃, xP̃z, η̃) = lim
P̃z≫mN

lim
a→0

Zuv
B̃i/h

S̃q(a, 2yn,2yB…)

ζ̃ = x2m2
Ne2(yP̃+yB−yn)

lim
η̃→∞

f̃ naive
i/h

gq
S(bT, μ)

= C(xP̃z, μ) exp[ 1
2

γq
ζ (μ, bT)ln

(2xP̃z)2

ζ ] fq/h(x, ⃗b T, μ, ζ) + 𝒪(y−k
P̃ e−yP̃)

f̃ naive
i/h = lim

a→0
ZuvB̃i/h/ S̃q

naive

b⊥

t
z

L

S̃q
naive :

🙂  Directly calculable on the lattice

𝒪 ( bT

η̃
,

1
(xbTP̃z)2

,
1

P̃zη̃
,

Λ2
QCD

(xP̃z)2 )

Ji, Liu and Liu, NPB 955 (2020),  PLB 811 (2020).gq
S (bT, μ) = Sr(bT, μ)Reduced soft function:
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Collins-Soper (CS) kernel from lattice QCD
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γq
ζ (μ, bT) =

1
ln(Pz

1 /Pz
2)

ln
CTMD

ns (μ, xPz
2) B̃TMD

ns (x, ⃗b T, μ, Pz
1)

CTMD
ns (μ, xPz

1) B̃TMD
ns (x, ⃗b T, μ, Pz

2)
+ power corrections

Studying CS kernel through quasi-TMDs suggested in 
• Ji, Sun, Xiong and Yuan, PRD91 (2015); 

The concrete formalism first derived in 
• Ebert, Stewart and YZ, Phys.Rev.D 99 (2019).

• Does not depend on the external hadron state, could be calculated with pion 
TMD or Wave function (vacuum to pion amplitude) for simplicity; 

• One can also calculate ratios of TMDs with different spin structures. 

• Shanahan, Wagman and YZ, PRD 102 (2020); 
•  Ebert, Stewart and YZ, Phys.Rev.D 99 (2019); 
• Ji, Liu and Liu, NPB 955 (2020),  PLB 811 (2020).
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ln(Pz

1 /Pz
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ln
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ns (μ, xPz
2) B̃TMD

ns (x, ⃗b T, μ, Pz
1)

CTMD
ns (μ, xPz

1) B̃TMD
ns (x, ⃗b T, μ, Pz

2)
+ power corrections

Studying CS kernel through quasi-TMDs suggested in 
• Ji, Sun, Xiong and Yuan, PRD91 (2015); 

The concrete formalism first derived in 
• Ebert, Stewart and YZ, Phys.Rev.D 99 (2019).

• Does not depend on the external hadron state, could be calculated with pion 
TMD or Wave function (vacuum to pion amplitude) for simplicity; 

• One can also calculate ratios of TMDs with different spin structures. 

The idea of using ratios has been used in the calculation of x-moments of TMDs: 
Musch, Hägler, Engelhardt, Negele, Schäfer, et al., EPL88 (2009), PRD83 (2011), PRD85 (2012), PRD93 
(2016), arXiv:1601.05717, PRD96 (2017)

• Shanahan, Wagman and YZ, PRD 102 (2020); 
•  Ebert, Stewart and YZ, Phys.Rev.D 99 (2019); 
• Ji, Liu and Liu, NPB 955 (2020),  PLB 811 (2020).
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•Simulation of bare quasi beam function:

Collins-Soper (CS) kernel from lattice QCD

12

γq
ζ (μ, bT) =

1
ln(Pz

1 /Pz
2)

× ln
CTMD

ns (μ, xPz
2) ∫ dbz eibzxPz

1 Z̃′ (bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, η, Pz
1)

CTMD
ns (μ, xPz

1) ∫ dbz eibzxPz
2 Z̃′ (bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, η, Pz

2)

!4

LQCD Setup

Independent of hadron state, choice of momenta, choice of 

…up to power corrections:             ,                       ,          
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• Lattice renormalization and conversion to MSbar scheme

Collins-Soper (CS) kernel from lattice QCD

13

γq
ζ (μ, bT) =

1
ln(Pz

1 /Pz
2)

× ln
CTMD

ns (μ, xPz
2) ∫ dbz eibzxPz

1 Z̃′ (bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, η, Pz
1)

CTMD
ns (μ, xPz

1) ∫ dbz eibzxPz
2 Z̃′ (bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, η, Pz

2)

• Nonperturbative Renormalization:  

• Conversion to MSbar scheme: 

Z̃UV

Z̃′ 

For , 
Constantinou, Panagopoulos and Spanoudes, PRD99 (2019); 
For arbitrary , 
Ebert, Stewart and YZ, JHEP 03 (2020).

bz = 0

bz

Shanahan, Wagman and YZ, PRD 101 (2020).

Operator mixing: Z̃ΓΓ′ 
UV(bz)B̃Γ′ (bz)

∝ e−(2η+|bT|)/aCancel linear divergences:
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• Fourier transform: extrapolation to  necessary.∞

Collins-Soper (CS) kernel from lattice QCD
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FIG. 23. Examples of the averaged asymmetry-corrected modified MS-renormalized quasi beam functions B
MS

�4 , including fits
by Eqs. (26) and (27) to the real and imaginary parts, shown as shaded bands. Fig. 11 of the main text shows the example for
bT = 0.12 fm.
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• Perturbative matching and forming ratios at different :Pz

Collins-Soper (CS) kernel from lattice QCD
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FIG. 25. �̂q
⇣ computed as defined in Eq. (28) for momentum pairs {P z

1 , P
z
2 }, denoted by P z

1 /P
z
2 in the legend. The horizontal

shaded band shows the total uncertainty of the best result, and the corresponding x-window, determined as described in the
text. Fig. 12 of the main text shows the analogous results for bT = 0.12 fm.

Shanahan, Wagman and YZ, PRD 104 (2021).



YONG ZHAO, 03/10/2022

Current status for the CS kernel calculation
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Lattice setup Renormalization Operator 
mixing

Fourier 
transform Matching Plateau 

search

SWZ20 
PRD 102 (2020)  

Quenched
Yes Yes Yes LO Yes

LPC20 
PRL 125 (2020) N/A Yes N/A LO N/A

Regensburg/
NMSU 21 

JHEP 08 (2021)
N/A No N/A NLO N/A

PKU/ETMC 
21 

PRL 128 (2022)
N/A No N/A LO N/A

SWZ21 
PRD 104 (2021) Yes Yes Yes NLO Yes

a = 0.12 fm,
mπ = 580 MeV,
Pz

max = 1.5 GeV

a = 0.09 fm,
mπ = 827 MeV,
Pz

max = 3.3 GeV

a = 0.09 fm,
mπ = 422 MeV,
P+

max = 2.27 GeV

a = 0.10 fm,
mπ = 547 MeV,
Pz

max = 2.11 GeV

a = 0.06 fm,
mπ = 1.2 GeV,
Pz

max = 2.6 GeV
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(a) Comparison with the SV19 [4] and Pavia19 [5]
phenomenological parameterizations.
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(b) Comparison with quenched results of Ref. [19] (SWZ), as
well as results from the LPC [20], Regensburg/NMSU [21],
and ETMC/PKU [22] collaborations. Di↵erent sets of points
with the same color show di↵erent sets of results from the

same collaboration.

FIG. 15. bT -dependence of the Collins-Soper kernel as determined in this work (green squares in both panels) compared with
(a) phenomenological results, and (b) the results of other lattice QCD calculations of this quantity.

the e↵ects of higher-order matching, renormalization and
mixing, and power corrections, are significant, as each of
the approaches listed above treats one or more of these
systematic e↵ects di↵erently than in the primary analysis
presented here.

IV. OUTLOOK

This work presents a determination of the Collins-
Soper kernel from a dynamical lattice QCD calculation
following the approach of Refs. [26, 27]. Several system-
atic uncertainties remain to be addressed; in particular,
the quark masses used correspond to an unphysically-
large pion mass of m⇡ = 538(1) MeV, and the results are
obtained using a single ensemble of gauge field configura-
tions such that e↵ects from the discretization and finite
lattice volume cannot be fully quantified. A fully model-
independent calculation will require these systematics to
be addressed, lattice QCD calculations to be performed
over a larger range of P zbz to eliminate the need to ex-
trapolate the quasi beam functions to large |bz

| and en-
able the DFT approach to be used, and larger values of
P z to be included to reduce the contributions from power
corrections and higher-twist e↵ects which dominate the
uncertainties of this calculation. With these caveats in
mind, the results of this work may be compared with
phenomenological extractions of the Collins-Soper ker-
nel, as shown in Fig. 15a. The lattice QCD and phe-
nomenological determinations are broadly consistent at
large bT , with clear deviations at the smallest bT values
studied; discretization e↵ects are expected to be largest
at small bT and might be relevant for understanding this
e↵ect. It is clear that, while challenging to achieve com-
putationally, future fully-controlled calculations by this

approach with uncertainties comparable to those of the
present study will be su�cient to di↵erentiate di↵erent
models of the Collins-Soper kernel and will provide im-
portant input for the analysis of low-energy SIDIS data
and the determinations of the TMDPDFs.

In considering the prospects for such future controlled
determinations of the Collins-Soper kernel from lattice
QCD, it is informative to contrast the results of this
study with those of other lattice QCD investigations; a
comparison of existing calculations [19–22] is provided in
Fig. 15b. All dynamical calculations use quark masses
resulting in similar values of the pion mass to that of the
calculation presented here (ranging from the lightest en-
semble with m⇡ = 350 MeV in Ref. [22] to m⇡ = 547
MeV in Ref. [20]), while the quenched calculation of
Ref. [19], in which the kernel should not depend on the
valence quark masses since it is independent of the exter-
nal state, is performed at m⇡ = 1.207 GeV. Each calcu-
lation uses a slightly di↵erent approach to constrain the
Collins-Soper kernel from quasi beam functions. In par-
ticular, the “Hermite/Bernstein” approach is followed in
Ref. [19] (“SWZ”), the calculation of Ref. [20] (“LPC”)
uses the “bz = 0, bare” approach, that of Ref. [21]
(“Regensburg/NMSU”) uses an approach similar to the
“bz = 0, bare” approach but with NLO matching, and
Ref. [22] (“ETMC/PKU) applies the “bz = 0/bT = 0,
bare” approach. While the various calculations exhibit
similar dependence on bT , there are some significant dis-
crepancies between the numerical results, and a wide
range of uncertainty estimates. Given the analysis of
Sec. III D, this is to be expected; even when the same
quasi beam function data is used, following the various
“bz = 0” approaches and the approach presented here re-
sult in significant systematic di↵erences, and significantly
di↵erent uncertainty estimates. Since Refs. [20–22] all
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phenomenological parameterizations.

(b) Comparison with quenched results of Ref. [19] (SWZ), as
well as results from the LPC [20], Regensburg/NMSU [21],
and ETMC/PKU [22] collaborations. Di↵erent sets of points
with the same color show di↵erent sets of results from the

same collaboration.

FIG. 15. bT -dependence of the Collins-Soper kernel as determined in this work (green squares in both panels) compared with
(a) phenomenological results, and (b) the results of other lattice QCD calculations of this quantity.

the e↵ects of higher-order matching, renormalization and
mixing, and power corrections, are significant, as each of
the approaches listed above treats one or more of these
systematic e↵ects di↵erently than in the primary analysis
presented here.

IV. OUTLOOK

This work presents a determination of the Collins-
Soper kernel from a dynamical lattice QCD calculation
following the approach of Refs. [26, 27]. Several system-
atic uncertainties remain to be addressed; in particular,
the quark masses used correspond to an unphysically-
large pion mass of m⇡ = 538(1) MeV, and the results are
obtained using a single ensemble of gauge field configura-
tions such that e↵ects from the discretization and finite
lattice volume cannot be fully quantified. A fully model-
independent calculation will require these systematics to
be addressed, lattice QCD calculations to be performed
over a larger range of P zbz to eliminate the need to ex-
trapolate the quasi beam functions to large |bz

| and en-
able the DFT approach to be used, and larger values of
P z to be included to reduce the contributions from power
corrections and higher-twist e↵ects which dominate the
uncertainties of this calculation. With these caveats in
mind, the results of this work may be compared with
phenomenological extractions of the Collins-Soper ker-
nel, as shown in Fig. 15a. The lattice QCD and phe-
nomenological determinations are broadly consistent at
large bT , with clear deviations at the smallest bT values
studied; discretization e↵ects are expected to be largest
at small bT and might be relevant for understanding this
e↵ect. It is clear that, while challenging to achieve com-
putationally, future fully-controlled calculations by this

approach with uncertainties comparable to those of the
present study will be su�cient to di↵erentiate di↵erent
models of the Collins-Soper kernel and will provide im-
portant input for the analysis of low-energy SIDIS data
and the determinations of the TMDPDFs.

In considering the prospects for such future controlled
determinations of the Collins-Soper kernel from lattice
QCD, it is informative to contrast the results of this
study with those of other lattice QCD investigations; a
comparison of existing calculations [19–22] is provided in
Fig. 15b. All dynamical calculations use quark masses
resulting in similar values of the pion mass to that of the
calculation presented here (ranging from the lightest en-
semble with m⇡ = 350 MeV in Ref. [22] to m⇡ = 547
MeV in Ref. [20]), while the quenched calculation of
Ref. [19], in which the kernel should not depend on the
valence quark masses since it is independent of the exter-
nal state, is performed at m⇡ = 1.207 GeV. Each calcu-
lation uses a slightly di↵erent approach to constrain the
Collins-Soper kernel from quasi beam functions. In par-
ticular, the “Hermite/Bernstein” approach is followed in
Ref. [19] (“SWZ”), the calculation of Ref. [20] (“LPC”)
uses the “bz = 0, bare” approach, that of Ref. [21]
(“Regensburg/NMSU”) uses an approach similar to the
“bz = 0, bare” approach but with NLO matching, and
Ref. [22] (“ETMC/PKU) applies the “bz = 0/bT = 0,
bare” approach. While the various calculations exhibit
similar dependence on bT , there are some significant dis-
crepancies between the numerical results, and a wide
range of uncertainty estimates. Given the analysis of
Sec. III D, this is to be expected; even when the same
quasi beam function data is used, following the various
“bz = 0” approaches and the approach presented here re-
sult in significant systematic di↵erences, and significantly
di↵erent uncertainty estimates. Since Refs. [20–22] all

Comparison with phenomenology

SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020) 
Pavia19: A. Bacchetta et al., JHEP 07 (2020)

Shanahan, Wagman and YZ, PRD 104 (2021).

𝒪 ( bT

η̃
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1
(xbTP̃z)2

,
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P̃zη̃
,

Λ2
QCD

(xP̃z)2 )Discretization and power corrections:

a = 0.12 fm, mπ = 580 MeV,

Pz
max = 1.5 GeV
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(a) Comparison with the SV19 [4] and Pavia19 [5]
phenomenological parameterizations.
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(b) Comparison with quenched results of Ref. [19] (SWZ), as
well as results from the LPC [20], Regensburg/NMSU [21],
and ETMC/PKU [22] collaborations. Di↵erent sets of points
with the same color show di↵erent sets of results from the

same collaboration.

FIG. 15. bT -dependence of the Collins-Soper kernel as determined in this work (green squares in both panels) compared with
(a) phenomenological results, and (b) the results of other lattice QCD calculations of this quantity.

the e↵ects of higher-order matching, renormalization and
mixing, and power corrections, are significant, as each of
the approaches listed above treats one or more of these
systematic e↵ects di↵erently than in the primary analysis
presented here.

IV. OUTLOOK

This work presents a determination of the Collins-
Soper kernel from a dynamical lattice QCD calculation
following the approach of Refs. [26, 27]. Several system-
atic uncertainties remain to be addressed; in particular,
the quark masses used correspond to an unphysically-
large pion mass of m⇡ = 538(1) MeV, and the results are
obtained using a single ensemble of gauge field configura-
tions such that e↵ects from the discretization and finite
lattice volume cannot be fully quantified. A fully model-
independent calculation will require these systematics to
be addressed, lattice QCD calculations to be performed
over a larger range of P zbz to eliminate the need to ex-
trapolate the quasi beam functions to large |bz

| and en-
able the DFT approach to be used, and larger values of
P z to be included to reduce the contributions from power
corrections and higher-twist e↵ects which dominate the
uncertainties of this calculation. With these caveats in
mind, the results of this work may be compared with
phenomenological extractions of the Collins-Soper ker-
nel, as shown in Fig. 15a. The lattice QCD and phe-
nomenological determinations are broadly consistent at
large bT , with clear deviations at the smallest bT values
studied; discretization e↵ects are expected to be largest
at small bT and might be relevant for understanding this
e↵ect. It is clear that, while challenging to achieve com-
putationally, future fully-controlled calculations by this

approach with uncertainties comparable to those of the
present study will be su�cient to di↵erentiate di↵erent
models of the Collins-Soper kernel and will provide im-
portant input for the analysis of low-energy SIDIS data
and the determinations of the TMDPDFs.

In considering the prospects for such future controlled
determinations of the Collins-Soper kernel from lattice
QCD, it is informative to contrast the results of this
study with those of other lattice QCD investigations; a
comparison of existing calculations [19–22] is provided in
Fig. 15b. All dynamical calculations use quark masses
resulting in similar values of the pion mass to that of the
calculation presented here (ranging from the lightest en-
semble with m⇡ = 350 MeV in Ref. [22] to m⇡ = 547
MeV in Ref. [20]), while the quenched calculation of
Ref. [19], in which the kernel should not depend on the
valence quark masses since it is independent of the exter-
nal state, is performed at m⇡ = 1.207 GeV. Each calcu-
lation uses a slightly di↵erent approach to constrain the
Collins-Soper kernel from quasi beam functions. In par-
ticular, the “Hermite/Bernstein” approach is followed in
Ref. [19] (“SWZ”), the calculation of Ref. [20] (“LPC”)
uses the “bz = 0, bare” approach, that of Ref. [21]
(“Regensburg/NMSU”) uses an approach similar to the
“bz = 0, bare” approach but with NLO matching, and
Ref. [22] (“ETMC/PKU) applies the “bz = 0/bT = 0,
bare” approach. While the various calculations exhibit
similar dependence on bT , there are some significant dis-
crepancies between the numerical results, and a wide
range of uncertainty estimates. Given the analysis of
Sec. III D, this is to be expected; even when the same
quasi beam function data is used, following the various
“bz = 0” approaches and the approach presented here re-
sult in significant systematic di↵erences, and significantly
di↵erent uncertainty estimates. Since Refs. [20–22] all
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same collaboration.

FIG. 15. bT -dependence of the Collins-Soper kernel as determined in this work (green squares in both panels) compared with
(a) phenomenological results, and (b) the results of other lattice QCD calculations of this quantity.

the e↵ects of higher-order matching, renormalization and
mixing, and power corrections, are significant, as each of
the approaches listed above treats one or more of these
systematic e↵ects di↵erently than in the primary analysis
presented here.
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Soper kernel from a dynamical lattice QCD calculation
following the approach of Refs. [26, 27]. Several system-
atic uncertainties remain to be addressed; in particular,
the quark masses used correspond to an unphysically-
large pion mass of m⇡ = 538(1) MeV, and the results are
obtained using a single ensemble of gauge field configura-
tions such that e↵ects from the discretization and finite
lattice volume cannot be fully quantified. A fully model-
independent calculation will require these systematics to
be addressed, lattice QCD calculations to be performed
over a larger range of P zbz to eliminate the need to ex-
trapolate the quasi beam functions to large |bz

| and en-
able the DFT approach to be used, and larger values of
P z to be included to reduce the contributions from power
corrections and higher-twist e↵ects which dominate the
uncertainties of this calculation. With these caveats in
mind, the results of this work may be compared with
phenomenological extractions of the Collins-Soper ker-
nel, as shown in Fig. 15a. The lattice QCD and phe-
nomenological determinations are broadly consistent at
large bT , with clear deviations at the smallest bT values
studied; discretization e↵ects are expected to be largest
at small bT and might be relevant for understanding this
e↵ect. It is clear that, while challenging to achieve com-
putationally, future fully-controlled calculations by this

approach with uncertainties comparable to those of the
present study will be su�cient to di↵erentiate di↵erent
models of the Collins-Soper kernel and will provide im-
portant input for the analysis of low-energy SIDIS data
and the determinations of the TMDPDFs.

In considering the prospects for such future controlled
determinations of the Collins-Soper kernel from lattice
QCD, it is informative to contrast the results of this
study with those of other lattice QCD investigations; a
comparison of existing calculations [19–22] is provided in
Fig. 15b. All dynamical calculations use quark masses
resulting in similar values of the pion mass to that of the
calculation presented here (ranging from the lightest en-
semble with m⇡ = 350 MeV in Ref. [22] to m⇡ = 547
MeV in Ref. [20]), while the quenched calculation of
Ref. [19], in which the kernel should not depend on the
valence quark masses since it is independent of the exter-
nal state, is performed at m⇡ = 1.207 GeV. Each calcu-
lation uses a slightly di↵erent approach to constrain the
Collins-Soper kernel from quasi beam functions. In par-
ticular, the “Hermite/Bernstein” approach is followed in
Ref. [19] (“SWZ”), the calculation of Ref. [20] (“LPC”)
uses the “bz = 0, bare” approach, that of Ref. [21]
(“Regensburg/NMSU”) uses an approach similar to the
“bz = 0, bare” approach but with NLO matching, and
Ref. [22] (“ETMC/PKU) applies the “bz = 0/bT = 0,
bare” approach. While the various calculations exhibit
similar dependence on bT , there are some significant dis-
crepancies between the numerical results, and a wide
range of uncertainty estimates. Given the analysis of
Sec. III D, this is to be expected; even when the same
quasi beam function data is used, following the various
“bz = 0” approaches and the approach presented here re-
sult in significant systematic di↵erences, and significantly
di↵erent uncertainty estimates. Since Refs. [20–22] all

Comparison with phenomenology

SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020) 
Pavia19: A. Bacchetta et al., JHEP 07 (2020)

Shanahan, Wagman and YZ, PRD 104 (2021).
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All extractions in a single plot
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• Relation between Quasi TMD and TMD 

• Lattice QCD calculation of the Collins-Soper kernel 

• Soft function from lattice QCD 

• Outlook

Outline
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Reduced soft function from LaMET
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lim
η̃→∞

f̃ naive
i/h

gq
S(bT, μ)

= C(xP̃z, μ) exp[ 1
2

γq
ζ (μ, bT)ln

(2xP̃z)2

ζ ] fq/h(x, ⃗b T, μ, ζ) + 𝒪(y−k
P̃ e−yP̃)

Sr(bT, μ) = [gq
S (bT, μ)]2Reduced soft function:

= ⟨π(−P) | j1(bT)j2(0) |π(P)⟩

Pz≫mN= Sr
q(bT, μ)∫ dxdx′ H(x, x′ , μ)

F(bT, Pz)

× Φ†(x, bT, Pz)Φ(x′ , bT, Pz)

H

CC

H

P ′P

S

t

: Quasi-TMD wave functionΦ
Ji, Liu and Liu, NPB 955 (2020),  PLB 811 (2020).

Light-meson form factor:j1

j2

Φ̃ =
⟨0 |𝒪(bμ) |π(P)⟩

S̃q
naive
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• Tree-level approximation:


• Beyond tree-level, it is necessary to obtain x-dependence.

Reduced soft function from LaMET

21

Pz≫mN= Sr
q(bT, μ)∫ dxdx′ Φ†(x, bT, Pz)Φ(x′ , bT, Pz)F(bT, Pz)

H(x, x′ , μ) = 1 + 𝒪(αs)

= Sr
q(bT)[Φ̃(bz = 0,bT, Pz)]2

⇒ Sr
q(bT) =

F(bT, Pz)
[Φ̃(bz = 0,bT, Pz)]2
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First lattice results with tree-level matching
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Q.-A. Zhang, et al. (LPC), PRL 125 (2020).
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�Et
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z
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where again we parameterize the mixing with one excited
state. Ap is the matrix element of the point sink pion in-
terpolation field. It will be removed when we normalize
�`(0, b?, P z

, `) with �`(0, 0, P z
, 0). We choose �� = �

t
�5

to define the wave function amplitude in Eq. (4). Based
on the quasi-TMDPDF study in Ref. [25, 27] with a sim-
ilar staple-shaped gauge link operator, the mixing e↵ect
could be sizable when summing various contributions. In
the supplemental material, we report a similar simulation
but using the A654 ensemble. We find that the mixing
e↵ects can reach order 5% for the transverse separation
b? ⇠ 0.6fm. These e↵ects will be included in the fol-
lowing analysis as one of the systematic uncertainties,
while a comprehensive study on the mixing e↵ects will
be conducted in the future.

FIG. 2. Results for the ` dependence of the quasi-TMDWF
with z = 0, and also the square root of the Wilson loop
which is used for the subtraction, taking the {P z, b?, t} =
{6⇡/L, 3a, 6a} case as a example. All the results are normal-
ized with their values at ` = 0.

The dispersion relation of the pion state, statistical
checks for the measurement histogram, and information
on the autocorrelation between configurations can be
found in the supplemental materials [28].

Numerical Results. Fig. 2 shows the dependence of
the norm of quasi TMDWFs on the length ` of the
Wilson-line. As one can see from this figure, with
{P

z
, b?, t} = {6⇡/L, 3a, 6a}, both the quasi-TMDWF

�`(0, b?, P z
, `) and the square root of the Wilson loop

ZE decay exponentially with length `, but the subtracted
quasi-TMDWF is length independent when ` � 0.4 fm.
Some other cases with larger P z, b?, and t can be found
in the supplemental materials [28]. Based on this ob-
servation, we will use ` = 7a = 0.686 fm as asymptotic

results for all cases in the following calculation.

FIG. 3. The ratios C3(b?, P
z, tsep, t)/C2(0, P

z, 0, tsep) (data
points) which converge to the ground state contribution at
t, tsep ! 1 (gray band) as function of tsep and t, with
{P z, b?} = {6⇡/L, 3a}. As in this figure, our data in gen-
eral agree with the predicted fit function (colored bands).

We performed a joint fit of the form factor and
quasi-TMDWF with the same P

z and b? with the
parameterization in Eqs. (14) and (15). The ra-
tios C3(b?, P z

, tsep, t)/C2(0, P z
, 0, tsep) with di↵erent tsep

and t for the {P
z
, b?} = {6⇡/L, 3a} case are shown in

Fig. 3, with ground state contribution (gray band) and
the fitted results at finite t2 and t (colored bands). In this
calculation, the excited state contribution is properly de-
scribed by the fit with �

2
/d.o.f. = 0.6. The details of the

joint fit, and also more fit quality checks are shown in the
supplemental materials [28], with similar fitting quality.

FIG. 4. The intrinsic soft factor as a function of b? with
b?,0 = a as in Eq. (9). With di↵erent pion momentum P z,
the results are consistent with each other. The dashed curve
shows the result of the 1-loop calculation, see Eq. (7), with the
strong coupling constant ↵s(1/b?). The shaded band corre-
sponds to the scale uncertainty of ↵s: µ 2 [1/

p
2,
p
2]⇥1/b?.

The systematic uncertainty from the operator mixing has
been taken into account.

The resulting soft factor as function of b? is plotted in
Fig. 4, at �= 2.17, 3.06 and 3.98, which corresponds to
P

z = {4, 6, 8}⇡/L = {1.05, 1.58, 2.11} GeV respectively.
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Figure 2. The lattice results of S(b⊥) for various momenta,
together with the one-loop perturbative result S1−loop

MS
and its

variant S′1−loop
MS

with ↵s including up to 4 loops. The scale µ

in Eq. (17) is set as µ = 2 GeV.

cancelling the dominant higher-twist e↵ects, the results
become much more consistent. The residual deviations
serve as measure of important systematic e↵ects to be
controlled in future studies.

Results of the soft function – After checking the
consistency among the various improved pion matrix ele-
ments, we use the choice of 1

2
(F�5�1 + F�1) as an example

to present the results of S(b⊥) for various momenta P z

and pion masses m⇡
vi.

In Fig. 2, S(b⊥, P z
) is shown together with the one-

loop perturbative curve [35],

S
MS
(b⊥, µ) = 1 − ↵sCF

⇡
ln

µ2b2⊥
4e−2�E

+O(↵2

s), (17)

where one-loop and four-loop values of ↵s are used at the
physically most relevant scale of S(b⊥), i.e. 1�b⊥. The
scale µ is set as µ = 2 GeV. We note that the lattice re-
sults agree qualitatively with the perturbative function
at around b⊥ ∼ 0.2 fm, particularly at the largest boost
and when the higher-order e↵ects are partially included
via ↵s. At larger b⊥, non-perturbative features start to
set in and the decay of S(b⊥) is slower than the pertur-
bative prediction. It is also noteworthy that the conver-
gence of the lattice results in P z clearly increases with
b⊥ – the results from the two largest P z are compatible
for b⊥ � 0.2 fm, while smaller transverse separations will
need yet larger boosts to establish convergence.

In Fig. 3, we examine the pion mass dependence of
the soft function. Although S(b⊥) is extracted from pion
matrix elements which depend on the detailed process
of ⇡(P z

) → ⇡(−P z
), the factorization allows us to can-

cel this process dependence. Performing the calculation
at four pion masses, we find that the lattice results are
generally consistent within statistical errors, although a
small systematic increase is found when decreasing m⇡.
This observation supports the statement from the factor-
ization [17] that the soft function does not depend on the

Figure 3. The intrinsic soft function S(b⊥) for the pion masses
ranging from 827 MeV to 350 MeV. Here, we show results
calculated at the momentum P

z = 5 2⇡
L

as an example.

detailed hadronic information from the initial/final state.
Results for the Collins-Soper kernel – The

Collins-Soper kernel K(b⊥, µ) governs the rapidity evo-
lution of the TMDPFs. In LaMET, the quasi-TMDPDF
is factorized into the light-cone TMDPDF and a
K(b⊥, µ) ln(⇣z�⇣) factor, where ⇣z = 2(xP z

)
2, with P z

playing the role of the rapidity, while ⇣ is the light-cone
counterpart of ⇣z [36]. Thus, by taking the ratio of quasi-
TMDPDFs at di↵erent values of P z, one can extract
K(b⊥, µ). This ratio can also be expressed in terms of
the quasi-TMDWFs [18] as

K(b⊥, µ) = lim
l→∞

1

ln(P z
1
�P z

2
)
ln �

�(b⊥, l, P z
1
)�E1

�(b⊥, l, P z
2
)�E2

�

=
1

ln(P z
1
�P z

2
)
ln
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��
(b⊥, P z

1
)
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��
(b⊥, P z

2
)
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1
)
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. (18)

Figure 4. The lattice results for the Collins-Soper kernel
K(b⊥, µ) from various calculations, described by the color of
yellow [20], blue [19], green [18] and red. The results from
a same calculation are shifted horizontally to make an easier
comparison.

In Fig. 4, the lattice results of K(b⊥, µ) from this work

Y. Li et al., PRL 128 (2022).

a = 0.10 fm,
mπ = 547 MeV,
Pz

max = 2.11 GeV

a = 0.09 fm,
mπ = 827 MeV,
Pz

max = 3.3 GeV
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Targets for lattice QCD studies:

Outlook
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Observables Status

Non-perturbative CS kernel
 ✔, improving the systematics

Soft factor ✔, to be under systematic control

Info on spin-dependent TMDs (in ratios)
 In progress

Info on 3D structure,             (in ratios)
 In progress

Proton v.s. pion TMDs,             (in ratios)
 In progress

Flavor dependence of TMDs,          (in ratios) 


  
to be studied

TMDs and TMD Wave functions,           In progress

Gluon TMDs
 to be studied

Wigner distributions/GTMDs to be studied

(x, bT)

(x, bT)

(x, bT)

(x, bT)

(x, bT)

(x, bT)
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• Systematic uncertainties: 
• Pion mass dependence;

• Lattice renormalization: operator mixing, continuum extrapolation;

• Fourier transform (FT);

• NLO (and higher order) matching, resummation;

• Plateau in x-space affected by FT and the size of power corrections.


• Milestones in 5 years: 

• 5-10% level precision for the quark CS kernel for 0.4 GeV <  < 2 GeV;


• 5-10% level precision for ratios of spin-dependent (quark) TMDs;


• Controlling the systematics in the soft function for obtaining the  
dependence of (quark) TMDs;


• Extend to the gluons.

b−1
T

(x, bT)

Outlook

24


