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Goal
Proof of Factorization connecting 

Quasi-TMDs (Lattice) and Collins-TMDs (Continuum)

EIC

Bachetta et.al. (1912.07550)

lim
⌘̃!1

f̃i/h(x,~bT , µ, ⇣, xP̃
z, ⌘̃) = Ci

�
xP̃ z, µ

�
fC
i/h(x,

~bT , µ, ⇣) + . . .

Ebert, Schindler, IS, Zhao (arXiv:2201.08401) 
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Figure 5. The TMD of the down quark at µ =
p

⇣ = Q = 2 GeV (left plot) and 10 GeV (right
plot) as a function of the partonic transverse momentum k? for three different values of x. The
bands give the 1-� uncertainty.

k? for x = 0.001, 0.1, 0.3. The 1-� uncertainty bands are also shown. As expected, TMDs
are suppressed as k? grows and the suppression becomes relatively stronger as Q increases.

4.3 Perturbative convergence

In the previous section we discussed the quality of our fit at N3LL, which is the best accuracy
presently available. In this section we show how the inclusion of perturbative corrections is
crucial to achieve a better description of the experimental data. To this end, we performed
fits at NLL0, NNLL, and NNLL0 (see Sec. 2.4), and compared them to the N3LL fit. We
did not consider LL and NLL accuracies because in both cases the description of the data
is very poor (�2 & 20).

NLL0 NNLL NNLL0 N3LL

Global �2 1126 571 379 360

Table 6. Values of the global �2 of the fits at NLL0, NNLL, NNLL0, and N3LL accuracy.

Tab. 6 reports the values of the global �2 for each of the four accuracies considered.
In order to appreciate the significance of the differences,10 we have reported the absolute
values of the �2 without dividing by the number of data points Ndat. Fig. 6 shows a
graphical representation of Tab. 6. The global quality of the fit improves significantly as
the perturbative accuracy increases. In addition, Fig. 6 shows that the convergence rate
decreases when going to larger perturbative orders. On the one hand, we conclude that it
is necessary to include higher perturbative corrections to obtain a good description of the
data and that N3LL corrections are still significant. On the other hand, it appears that the
perturbative series is nicely converging and N3LL accuracy seems appropriate within the
current experimental uncertainties.

10Note that a difference of n units at the level of the global �2 roughly means a separation of around
p
n

standard deviations.

– 24 –

Quasi PDFs from Lattice QCD

Lattice determination of PDFs

Lattice QCD
Only practical tool for nonperturbative calculations
Based on discretized path integral
with imaginary time t = itE :

hOi =

Z
D D ̄DA O e

iS

!

Z
D D ̄DA O e

�SE

In general: can only calculate Euclidean-time dependence
I Requires analytical continuation to Minkowski time

Obstacles to calculating PDFs from lattice
PDF is time-dependent correlation function

I Analytic continuation from Euclidean time currently unknown

No lightlike kinematics on lattice: n2

E = 0 , n
µ
E = 0

Many proposals on PDF determination in recent years

Markus Ebert (MIT) Quasi (TMD)PDFs from Lattice QCD 02/05/19 7 / 30
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Goal

Outline

Proof of Factorization connecting 
Quasi-TMDs (Lattice) and Collins-TMDs (Continuum)

Introduction
Setup a General Framework
Proof

lim
⌘̃!1

f̃i/h(x,~bT , µ, ⇣, xP̃
z, ⌘̃) = Ci

�
xP̃ z, µ

�
fC
i/h(x,

~bT , µ, ⇣) + . . .

Ebert, Schindler, IS, Zhao (arXiv:2201.08401) 

Implications
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TMDs

Semi-Inclusive DIS

electron 
p

h 

Drell-Yan Dihadron in e+e-

p p

h1 

h2 h
h1

h2e-

e- e-e+

� � Dh1/q(x, kT )Dh2/q(x, kT )� � fq/P (x, kT )Dh/q(x, kT ) � � fq/P (x, kT )fq/P (x, kT )

qT � Q
Fragmentation

Dh/q(x, kT )

µ+

µ�

Q, qT

Pa Pb

Quark TMDs

�[�+]
q h(x, b) = f1(x, b) + i✏µ⌫T bµs⌫Mf?1 (x, b)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b? ⇠ 1

k?<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum

longitudinal & Transverse

fq/P (x, kT , µ, �)
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TMD Factorization (Drell Yan) CSS (Collins, Soper, Sterman)
SCET (Soft Collinear Effective Theory)

Hard virtual  
corrections

d�

dQdY dq
2
T

= H(Q,µ)

Z
d
2~bT e

i~qT ·~bT fq(xa,
~bT , µ, ⇣a) fq(xb,

~bT , µ, ⇣b)
h
1 +O

⇣
q
2
T

Q2

⌘i

Reminder (& notation) of TMDPDFs

Definition of TMDPDFs

Motivation: TMD factorization theorem (example: pp ! Z ! l
+
l
�)

�(~qT ) = H(Q,µ)

Z
d2~bT e

i~qT ·~bT f
TMD
q/a (xa,

~bT , µ, ⇣a) f
TMD
q/b (xb,

~bT , µ, ⇣b) + O

⇣
qT

Q

⌘2

I H(Q ⇠ mZ , µ): Hard function (virtual corrections)

Quark TMDPDF: [Collins ’11; Echevarria, Idilbi, Scimemi ’11; Chiu, Jain, Neill, Rothstein ’12, ...]

f
TMD
q (x,~bT , µ, ⇣) = Zuv(µ, ⇣, ✏) lim

⌘!0
Bq(x,~bT , ✏, ⌘, ⇣)

p
Sq(bT , ✏, ⌘)

S0
q(bT , ✏, ⌘)

I Bq: Beam function (collinear matrix element)
I Sq, S

0
q : Soft contributions

I ⌘: Regulates rapidity divergences
I ⇣: Collins-Soper scale [Collins, Soper’81]

Definitions of ⌘ and hence of Bq and Sq

are scheme dependent,
but fTMD

q is scheme independent
l

p p

l

+

-

Soft

Beam

Markus Ebert (MIT) Quasi TMDPDFs & CS Kernel From Lattice QCD 11/03/2018 1 / 14

TMDs

fq(x,~bT , µ, ⇣) ⇠ ZuvBq/
p

Sq
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TMD Definitions Beam  
Function

Soft  
factor

Towards quasi-TMDPDFs from Lattice QCD

Constructing the quasi beam function

Beam function: (light-cone correlator)

Bq(x,~bT , . . . ) =

Z
db+

4⇡
e
� i

2b
+
(xP�

)

D
p(P )

���q̄(bµ)W (0,~0T )

(b+,~bT )

�
�

2
q(0)

���p(P )
E

Quasi beam function: (equal-time correlator)

B̃q(x,~bT , . . . ) =

Z
dbz

2⇡
e
ibz

(xP z
)

D
p(P )

���q̄(bµ)W (0,~0T )

(bz,~bT )

�
3

2
q(0)

���p(P )
E

Wilson line path:
I Finite lattice size requires to truncate at length L

I Bare operators related by Lorentz boost

b?

t
z

q

q

b+

?

z

t

nn̄

b
z�b

z

�
�
b z
n̄

�
b z
n̄

b
µ =

b
+

2
(1, 0, 0, 1) + b

µ
T

Markus Ebert (MIT) Quasi (TMD)PDFs from Lattice QCD 02/05/19 21 / 30

Towards quasi-TMDPDFs from Lattice QCD

Constructing the quasi soft function

Soft function: (light-cone correlator)

S
q(bT ) = h0

��[S†
nSTSn̄](~bT )[S

†
n̄S

†
TSn](~0T )

��0i

Quasi soft function: (equal-time correlator)

S̃
q(bT ) = h0

��[S†
ẑSTS�ẑ](~bT )[S

†
�ẑSTSẑ](~0T )

��0i

Wilson line path:
I Finite lattice size requires to truncate at length L

I Bare operators not related by Lorentz boost (more on this later)

b?

t
z

?

z

t

nn̄

b
z�b

z

�
b z
n̄

�
b
z n

v < 0v > 0

n
µ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,�1)

Markus Ebert (MIT) Quasi (TMD)PDFs from Lattice QCD 02/05/19 22 / 30

OB :

staple shaped

Wilson lines


Sq = �0|OS |0�

OS :

two light-cone directions

Bq = FTb+ �p|OB |p�

Lattice calculations must overcome light-cone nature of TMD definitions.

/
q

Sq(bT , ✏, ⌧)fq(x,~bT , µ, ⇣) = lim
✏!0

Zuv(✏, µ, ⇣) lim
⌧!0

Bq(x,~bT , ✏, ⌧, ⇣)

rapidity 
limit
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Evolution µ = renormalization scale

� = Collins-Soper parameter

fq(x,~bT , µ, ⇣) ⇠ ZuvBq/
p

Sq

Sum large logarithms:L = ln(Q2b2
T ) � ln

Q2

q2
T

Solution:

⇣ = 2
�
xP+e�yn

�2

Connect Lattice calc. or model:   

with scales needed for  :    

μ0, ζ0 ∼ GeV
σ μ, ζ ∼ Q

CS kernel

Nonperturbative contributions in both

fq(x, bT, μ0, ζ0), b�1
T ⇠ ⇤QCD

Targets for Lattice Calculations

fq(x,~bT , µ, ⇣) = exp
hZ µ

µ0

dµ0

µ0 �
q
µ(µ

0, ⇣0)
i
exp

h1
2
�q
⇣ (µ, bT ) ln

⇣

⇣0

i

⇥ fq(x,~bT , µ0, ⇣0)

γq
ζ (μ, bT))
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Nonperturbative Contributions to DY Cross Sections

0 1 2 3 4 5
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Motivation

Precision TMD measurements

Drell-Yan process:

Measured to . 1% accuracy
I Crucial input for PDF determination

Standard candle of Standard Model:
I Important test of QCD

Can we disentangle possible BSM physics
from PDF fitting?

I Can easily absorb small BSM
signals into PDFs ...

W -mass measurement:
Dominant uncertainty from PDFs:

I Particularly important:
correlations between quark flavors

Direct calculation of PDFs could alleviate such uncertainties

 [GeV]ll
T

p
1 10 210

]
σ

Pu
ll 

[

2−
0
2 1 10 210

C
om

bi
ne

d
C

ha
nn

el

0.99

1

1.01

/NDF=43/432χ

1 10 210

]-1
  [

G
eV

ll T
/d

p
σ

 d
σ

1/

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10
1

ee-channel
-channelµµ

Combined
Statistical uncertainty
Total uncertainty

ATLAS -1=8 TeV, 20.3 fbs
| < 2.4

ll
 < 116 GeV, |yll m≤66 GeV 

[ATLAS ’15]

[ATLAS ’17]

Markus Ebert (MIT) Quasi (TMD)PDFs from Lattice QCD 02/05/19 4 / 30

Collins-Soper kernel

See Zhiquan Sun’s talk
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Nonperturbative Contributions to DY Cross Sections

Boundary TMD PDF

See Zhiquan Sun’s talk
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Large Momentum EFT:  Quasi-PDFs Xiangdong Ji  
      2013 

Related by Lorentz boost

z

t
pn

z/2�z/2

� �zp
2

�zp
2

z + ct = 0, z − ct ≠ 0t = 0, z ≠ 0

f̃i(x, P z, µ̃) =
� 1

�1

dy

|y| Cij

�x

y
,

µ̃

P z
,

µ

yP z

�
fj(y, µ) + O

�M2

P 2
z

,
�2

QCD

x2P 2
z

�

quasi-PDF 
computable with  

Lattice QCD
Perturbative matching 

coefficient

PDF

Power corrections

�QCD � P z (finite large P z)

quasi-PDF and PDF:  same IR physics
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Requirements for a useful Lattice-TMD

1. Tractable on Lattice:  Equal time correlators  

2. Same IR physics  as continuum TMDs


3. Finite length Wilson lines (staples)   = finite

4. Cancel linear divergences due to self-energies  

(requires a soft factor  )

5. Relation to continuum TMDs should exist:  

B̃
(bT & ΛQCD)

η̃

S̃
f̃ → f

b

t

z

q

q

bz

T

bz+ 2

2

bz
2-

d

˜

˜˜ ˜

Figure 4: Wilson line structure of (left) the quasi-beam function in eq. (2.29), and (right)
the MHENS scheme in eq. (2.39). Quasi-TMD staple legs extend along the z direction and
are closed by a perpendicular segment, whereas MHENS staple legs extend along a generic
spacelike direction v

µ and are closed by a segment with nontrivial cusp angle �.

Combining eqs. (2.29) and (2.31) as required by eq. (2.27) gives

f̃
[�̃]

i/h(x,
~bT , µ, ⇣̃, xP̃

z) = lim
⌘̃!1
a!0

Z
0
uv(µ, µ̃)Zuv(a, µ̃, yn � yB)

B̃
[�̃]

i/h(x,
~bT , a, ⌘̃, xP̃

z)
q
S̃R(bT , a, ⌘̃, 2yn, 2yB)

= lim
⌘̃!1

B̃
[�̃]

i/h(x,
~bT , µ, ⌘̃, xP̃

z)
q
S̃R(bT , µ, ⌘̃, 2yn, 2yB)

. (2.32)

Here ⇣̃ =
�
xmhe

yP̃+yB�yn
�
2
= (2xP̃ z

e
yB�yn)2, and the second equality holds for large P̃

z.
In practice, calculating (quasi-)TMD soft functions poses a significant challenge for the

lattice. It is possible to construct the quasi-soft function indirectly through the spacelike
meson form factor and quasi-wavefunction [38]; promising first results using this approach
have been reported in refs. [46, 47].

Prior to this work, the literature has studied different proposals of the quasi-soft func-
tion which are constructed from equal-time Wilson lines [33–36, 38, 39]. The naive quasi-soft
function features a rectangle-shaped Wilson loop along the z direction,

S̃
R
naive(bT , a, ⌘̃) ⌘ S

R
⇥
b?, a, ⌘̃ẑ,�⌘̃ẑ

⇤
, (2.33)

whose renormalized continuum version with ⌘̃ = 1 in the MS scheme is denoted

S̃
R
naive(bT , µ) ⌘ S

R
⇥
b?, µ,1ẑ,�1ẑ

⇤
. (2.34)

However, it has been shown at one-loop level [36] that S̃
R
naive

(bT , µ) does not have the
correct IR physics for the quasi-TMD to be perturbatively matchable to the Collins TMD.
Although Refs. [34, 36] proposed a bent quasi-soft function that works at one-loop order, it
was argued that the factorization utilizing this function will break down at two loops [38].

– 14 –

Two approaches:

Lorentz Invariant method 
(MHENS TMDs)

quasi-TMDs

f̃ ⇠ ZUVB̃/
p

S̃



• MHENS:Musch, Hägler, Engelhardt, Negele, Schäfer (’10, ’11, ’15)

• Ji, Sun, Xiong, Yuan (’14); Ji, Link, Yuan, Zhang, Zhao (’18)

• Ebert, Stewart, Zhao (’18, ’19, ’19)

•

•

Literature:

Pioneered Lattice studies of TMDs,  exploit Lorentz Invariance 
ratios to cancel soft, focus on moments (  )bz → 0

Quasi TMDs, propose factorization ( ), calculate Cη = ∞

Propose factorization (finite ) and CS kernel method,  
IR tests, calculate C, lattice renormalization

η

Ji, Liu, Liu (’19, ’19) 

Vladimirov, Schäfer (’20)

• Many other Lattice studies …  (see Yong Zhao’s talk next)

Proposal for diagrammatic proof of factorization  
& lattice method for required quasi-soft factor

Factorization analysis

12



Unifying Correlators
v

?

b� �

�
b
2

b
2

�
b
2 + ⌘v + �

2

b
2 + ⌘v �

�
2

Figure 2: Generic staple-shaped Wilson line structure as defined by eq. (2.4). The black
double-lines extend along ⌘v, and the blue segments along b�� close the staple. Depending
on the choice of �, there can be cusps at any of the red points. Edges may have extent
along the conjugate direction P , which is not shown.

matrix elements involve open and closed staple-shaped Wilson lines, for which we introduce
a generic notation. First, we define a Wilson line along a path � in color representation R:

W
R[�] = P exp


ig

Z

�
dxµAa

µ(x)T
a
R

�
, (2.3)

where R = F in the fundamental and R = A in the adjoint representation. It is useful to
define a general class of Wilson lines using the three-sided shape shown in Fig. 2,

W
R
A (b, ⌘v, �) = W

R


b

2
!

b

2
+ ⌘v �

�

2
! �

b

2
+ ⌘v +

�

2
! �

b

2

�
. (2.4)

The length of the staple is relevant for its renormalization properties; here we have Lstaple =

|⌘v� �/2|+ |⌘v+ �/2|+ |b� �|, where the length of a four vector is given by |X| =
p
|X2|.

At the red points, the staple also has cusp angles �±, which can be computed from

cosh �± =
(⌘v ± �/2) · (b� �)

|⌘v ± �/2||b� �|
, (2.5)

where for space-like separations �± 2 [�i⇡, i⇡]. Generic quark and gluon beam function
correlators take the form

�[�]

q/h(b, P, ✏, ⌘v, �) =
D
h(P )

���q̄
⇣
b

2

⌘�
2
W

F
A (b, ⌘v, �)q

⇣
�
b

2

⌘���h(P )
E
,

�µ⌫⇢�
g/h (b, P, ✏, ⌘v, �) =

D
h(P )

���Gµ⌫
⇣
b

2

⌘�
2
W

A
A (b, ⌘v, �)G⇢�

⇣
�
b

2

⌘���h(P )
E
, (2.6)

In eq. (2.6), q(x) is a quark field of flavor q and G
µ⌫(x) is the gluon field strength tensor.

The quark and gluon fields are spatially separated by b, which is Fourier-conjugate to the
momentum of the struck parton. In the quark correlator, � denotes a generic Dirac struc-
ture, while for the gluon correlator µ, ⌫, ⇢,� are Lorentz indices. In both cases, h denotes
the struck hadron with momentum P , ✏ is the UV regulator, and ⌘v and � characterize
the longitudinal and transverse segments of the Wilson line, which we illustrate in Fig. 2.
Finally, we define the generic soft vacuum matrix element as

S
R(b, ✏, ⌘v, ⌘̄v̄) =

1

dR

D
0
���Tr

h
S
R(b, ⌘v, ⌘̄v̄)

i���0
E
, (2.7)
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Cusp angles:

v

?

b� �

�
b
2

b
2

�
b
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2

b
2 + ⌘v �

�
2

Figure 2: Generic staple-shaped Wilson line structure as defined by eq. (2.4). The black
double-lines extend along ⌘v, and the blue segments along b�� close the staple. Depending
on the choice of �, there can be cusps at any of the red points. Edges may have extent
along the conjugate direction P , which is not shown.

matrix elements involve open and closed staple-shaped Wilson lines, for which we introduce
a generic notation. First, we define a Wilson line along a path � in color representation R:

W
R[�] = P exp


ig

Z

�
dxµAa

µ(x)T
a
R

�
, (2.3)

where R = F in the fundamental and R = A in the adjoint representation. It is useful to
define a general class of Wilson lines using the three-sided shape shown in Fig. 2,

W
R
A (b, ⌘v, �) = W

R


b

2
!

b

2
+ ⌘v �

�

2
! �

b

2
+ ⌘v +

�

2
! �

b

2

�
. (2.4)

The length of the staple is relevant for its renormalization properties; here we have Lstaple =

|⌘v� �/2|+ |⌘v+ �/2|+ |b� �|, where the length of a four vector is given by |X| =
p
|X2|.

At the red points, the staple also has cusp angles �±, which can be computed from

cosh �± =
(⌘v ± �/2) · (b� �)

|⌘v ± �/2||b� �|
, (2.5)

where for space-like separations �± 2 [�i⇡, i⇡]. Generic quark and gluon beam function
correlators take the form

�[�]

q/h(b, P, ✏, ⌘v, �) =
D
h(P )

���q̄
⇣
b

2

⌘�
2
W

F
A (b, ⌘v, �)q

⇣
�
b

2

⌘���h(P )
E
,

�µ⌫⇢�
g/h (b, P, ✏, ⌘v, �) =

D
h(P )

���Gµ⌫
⇣
b

2

⌘�
2
W

A
A (b, ⌘v, �)G⇢�

⇣
�
b

2

⌘���h(P )
E
, (2.6)

In eq. (2.6), q(x) is a quark field of flavor q and G
µ⌫(x) is the gluon field strength tensor.

The quark and gluon fields are spatially separated by b, which is Fourier-conjugate to the
momentum of the struck parton. In the quark correlator, � denotes a generic Dirac struc-
ture, while for the gluon correlator µ, ⌫, ⇢,� are Lorentz indices. In both cases, h denotes
the struck hadron with momentum P , ✏ is the UV regulator, and ⌘v and � characterize
the longitudinal and transverse segments of the Wilson line, which we illustrate in Fig. 2.
Finally, we define the generic soft vacuum matrix element as

S
R(b, ✏, ⌘v, ⌘̄v̄) =

1

dR

D
0
���Tr

h
S
R(b, ⌘v, ⌘̄v̄)

i���0
E
, (2.7)

– 5 –

γ+

γ−

MHENS and Quasi Lattice TMDs use different proton matrix elements

A priori, relation to continuum (eg. Collins-TMD) is unclear

To clarify differences, we introduce a universal Beam Function: 

Ebert, Schindler, IS, Zhao (arXiv:2201.08401) 

Path Length:

:

LA = |⌘v � �/2|+ |⌘v + �/2|+ |b� �|

MHENS:   δ = 0
Quasi:   b − δ = bT

These matter for  
Renormalization

Collins:  also works

⌦[�]
q/h(b, P, ✏, ⌘v, �) =

D
h(P )

���q̄i
⇣ b

2

⌘�
2
WF

A (b, ⌘v, �)qi
⇣
� b

2

⌘���h(P )
E

WF
A

13
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t

z

T

vd
vd

Figure 3: Wilson line structure of the soft function, eq. (2.8) for ⌘, ⌘̄ < 0. Figure adapted
from ref. [63].

structure, while for the gluon correlator µ, ⌫, ⇢, and � are Lorentz indices. See refs. [40, 67]
for decompositions of different choices of � into independent spin structures for quark
TMDs, and refs. [68, 69] for the decomposition for gluon TMDs. In both cases, h denotes
the struck hadron with momentum P , ✏ is the UV regulator, and ⌘v and � characterize the
longitudinal and transverse segments of the Wilson line, which we illustrate in figure 2.

We define the generic soft vacuum matrix element as

S
R(b, ✏, ⌘v, ⌘̄v̄) =

1

dR

D
0
���Tr

h
S
R(b, ⌘v, ⌘̄v̄)

i���0
E
, (2.8)

where the trace is over color. The color averaging factor dR takes values dq = Nc and
dg = N

2
c � 1. The soft Wilson line is given by

S
R(b, ⌘v, ⌘̄v̄) = W

R


b

2
!

b

2
+ ⌘̄v̄ ! �

b

2
+ ⌘̄v̄ ! �

b

2

! �
b

2
+ ⌘v !

b

2
+ ⌘v !

b

2

�
, (2.9)

as shown in figure 3. S consists of two beam function staples glued together at the points
±b/2; the long sides of the staples run along the ⌘̄v̄ and ⌘v directions. The dependence
on two conjugate directions arises from the appearance of two TMDs in the physical cross
section in eq. (2.2). The length of the soft function path is L = 2|⌘̄v̄|+ 2|⌘v|+ 2|b|.

We define the transverse direction with respect to the plane spanned by P and v, taking
P? = v? = 0. Formally, this can be expressed as b

µ
? = g

µ⌫
? b⌫ with

g
µ⌫
? = g

µ⌫
�

1

1 + ⇣̂2


v
µ
v
⌫

v2
+

P
µ
P

⌫

P 2
+

⇣̂
2

P · v

�
P

µ
v
⌫ + v

µ
P

⌫
��

, ⇣̂ =
v · Pp
|v2|P 2

. (2.10)

We always take v and P to span the same plane as v and v̄. It follows that v? = v̄? = 0.
Our unified notation facilitates the comparison of different TMD schemes, particularly

when we examine their Lorentz invariants. In the most generic case, the beam function
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General Soft Function (finite )η

SR(b, ✏, ⌘v, ⌘̄v̄) =
1

dR

D
0
���Tr

h
SR(b, ⌘v, ⌘̄v̄)

i���0
E

SR : L = 2|⌘̄v̄|+ 2|⌘v|+ 2|b|
Path Length:

Needed to match IR structure 
(Ebert, IS, Zhao ’19)

Needed to cancel  linear div. in η Ω

No direct method to calculate on the Lattice.  
  
Indirect method exists (Ji, Liu, Liu ’19)   [See Yong Zhao’s talk]
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correlator in eq. (2.7) is specified by four independent vectors: b
µ
, P

µ
, ⌘v

µ, and �
µ. From

these vectors we can construct ten independent Lorentz invariants, which we choose to be

P
2
, b

2
, ⌘

2
v
2
, P · b ,

P · (⌘v)p
P 2|(⌘v)2|

,
b · (⌘v)p
|b2(⌘v)2|

,

�
2

b2
,

b · �

b2
,

P · �

P · b
,

� · (⌘v)

b · (⌘v)
. (2.11)

None of the TMD schemes we study in this paper contains a vector �
µ that is linearly

independent of bµ, Pµ
, and ⌘v

µ; thus, these schemes have six independent Lorentz invari-
ants. However, the quasi and MHENS TMDs do not follow from the same correlator defined
with six invariants, since they fix �

µ in different ways, as we will see below. Hence, even
if the first six invariants in eq. (2.11) are fixed to be the same, the two approaches have
different values for the last four invariants, and thus the quasi- and MHENS TMDs belong
to distinct schemes.

2.2 Continuum TMD schemes

In this section, we provide an overview of physical TMD schemes, which are defined on a
continuous spacetime and have infinitely long Wilson lines, with |⌘| = |⌘̄| = 1.

Lightcone coordinate conventions. It is convenient to work in a frame where the
hadron momenta P1,2 in eq. (2.1) are close to the lightlike unit vectors

n
µ
a =

1
p
2
(1, 0, 0, 1) , n

µ
b =

1
p
2
(1, 0, 0,�1) , (2.12)

which obey n
2
a = n

2

b = 0 and na · nb = 1. We define the lightcone decomposition of an
arbitrary four-vector p

µ as

p
µ = (p+, p�, p?) = p

+
n
µ
a + p

�
n
µ
b + p

µ
? , (2.13)

where p± = (p0±p
z)/

p
2 and p

µ
? = (0, px, py, 0) = (0, ~pT , 0). Here pµ? is a Minkowski vector,

and ~pT is the corresponding transverse Euclidean vector with magnitude pT ⌘ (~p2T )
1/2 =

(�p
2

?)
1/2. In lightcone coordinates, the incoming hadrons in eq. (2.1) have momenta

P
µ
1
= P

+

1

�
1, e�2y1 , 0?

�
, P

µ
2
= P

�
2

�
e
+2y2 , 1, 0?

�
, (2.14)

where y1,2 are the hadron rapidities.

2.2.1 Collins scheme

In the Collins TMD scheme [53], the factorization formula in eq. (2.1) takes the form

d�

dQ2dY d2~qT
= �0

X

i,j

Hij(Q,µ)

Z
d2~bT
(2⇡)2

e
i~qT ·~bT fi/h1

�
x1,

~bT , µ, ⇣1
�
fj/h2

�
x2,

~bT , µ, ⇣2
�
, (2.15)

where µ is the renormalization scale, and the CS scales [50, 51] are

⇣1 = 2(x1P
+

1
)2e�2yn , ⇣2 = 2(x2P

�
2
)2e+2yn . (2.16)
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Collins / LR JMY Quasi MHENS

bµ (0, b�, b?) (0, b�, b?) (0, bxT , b
y
T , b̃

z) (0, bxT , b
y
T , b̃

z)

vµ (�e2yB , 1, 0?) (v�e2y
0
B , v�, 0?) (0, 0, 0,�1) (0, vx, vy, vz)

�µ (0, b�, 0?) (0, b�, 0?) (0, 0, 0, b̃z) (0, 0, 0?)

Pµ mhp
2
(eyP , e�yP , 0?)

mhp
2
(eyP , e�yP , 0?) mh(cosh yP̃ , 0, 0, sinh yP̃ ) mh

⇣
cosh yP ,

Px

mh
,
P y

mh
, sinh yP

⌘

b2 �b2T �b2T �b2T � (b̃z)2 �b2T � (b̃z)2

(⌘v)2 �2⌘2e2yB 2⌘2(v�)2e2y
0
B �⌘̃2 �⌘2~v 2

P · b mhp
2
b�eyP

mhp
2
b�eyP �mhb̃

z sinh yP̃ mh sinh yP b̃
z + P xbxT + P ybyT

b · (⌘v)p
|(⌘v)2b2|

� b�eyBp
2 bT

sgn(⌘)
b�ey

0
B

p
2 bT

sgn(⌘)
b̃zq

(b̃z)2 + b2T

sgn(⌘)
bxT v

x + byT v
y + b̃zvz

p
v2T + (vz)2

q
b2T + (b̃z)2

P · (⌘v)p
P 2|⌘v|2

sinh(yP �yB) sgn(⌘) cosh(yP �y0
B) sgn(⌘) sinh yP̃ sgn(⌘)

P xvx + P yvy +mhv
z sinh yPp

v2T + (vz)2
p

m2

h + P 2
x + P 2

y

�2

b2
0 0

(b̃z)2

b2T + (b̃z)2
0

b · �
b2

0 0
(b̃z)2

b2T + (b̃z)2
0

P · �
P · b 1 1 1 0

� · (⌘v)
b · (⌘v) 1 1 1 0

P 2 m2

h m2

h m2

h m2

h

Table 2: Overview of the Lorentz invariants entering the generic TMD correlator as spec-
ified by eq. (2.11). Note that the Collins and LR schemes use the same four-vectors.

where the dimensionless form factors ⌦ on the right-hand side are functions of the 10
Lorentz invariants in eq. (2.11), which we suppress for brevity. The prefactors share the
same mass dimension and are finite as � ! 0 or b · v/

p
|v2b2| ! 0. In the second line,

we neglect terms that are suppressed at large momentum P , which do not contribute at
leading power.

Combining eqs. (3.1) and (3.3) and using P̃? = 0, we have

B̃
[�̃]

qi/h
(x,~bT , ✏, ⌘̃, xP̃

z) =

Z
d(b̃ · P̃ )

2⇡
e
�ix(b̃·P̃ )⌦qi/h

�
b̃, P̃ , ✏, ⌘̃ẑ, b̃

z
ẑ
�
. (3.4)

Note that the integration measure, the Fourier phase, and ⌦qi/h are Lorentz invariants. We
can write the LR/Collins beam function similarly:

B
C
qi/h

(x,~bT , ✏, yP � yB) =

Z
d(b · P )

2⇡
e
�ix(b·P )⌦qi/h

⇥
b, P, ✏,�1nB(yB), b

�
nb

⇤
. (3.5)
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Choices for various TMDs:

Can parameterize  with 10 Lorentz Invariants:Ω

6 like Musch et.al.

+4 that fix scheme  
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TMD Beam function Soft function

Collins lim
✏!0

ZR
UV lim

yB!�1

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, ✏,�1nB(yB), b

�nb

⇤
SR [b?, ✏,�1nA(yA),�1nB(yB)]

LR lim
�yB�1

lim
✏!0

ZR
UV

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, ✏,�1nB(yB), b

�nb

⇤
SR [b?, ✏,�1nA(yA),�1nB(yB)]

JMY lim
v�
v+ �1

lim
✏!0

ZR
UV

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, µ,�1v, b�nb

⇤
SR [b?, µ,�1v,�1ṽ]

Quasi lim
a!0

ZUV
Bi/hp
S̃R

⌦[�0,z
]

q/h (b̃, P̃ , a, ⌘̃ẑ, b̃z ẑ) SR


b?, a,�⌘̃

nA(yA)

|nA(yA)|
,�⌘̃

nA(yA)

|nA(yA)|

�

MHENS ⌦[�]

q/h(b, P, a, ⌘v, 0)

Table 1: Overview of TMD schemes, as presented in section 2. The correlator ⌦ is a
function of Lorentz invariants constructed from its arguments. See Table. 2 for a comparison
of parameter values, Wilson line definitions, and Lorentz invariants in each scheme.

identical at large proton momenta by evaluating the quasi-TMD in a boosted frame. We
thus can move from the quasi to the LR scheme through a large rapidity expansion. In
section 3.1.3 we demonstrate that reversing the renormalization and lightcone limits to go
from the LR to the Collins scheme gives rise to a perturbative matching coefficient. The
combination of expansion and matching leads to the desired factorization relation.

3.1.1 Beam correlators as a function of Lorentz invariants

Let us begin by examining the structure of the quasi-TMD. In dimensional regularization,
the quark quasi-beam function in eq. (2.29) reads

B̃
[�̃]

qi/h
(x,~bT , ✏, ⌘̃, xP̃

z) = N
�̃

Z
db̃z

2⇡
e
ib̃z(xP̃ z

)⌦[�̃]

qi/h

�
b̃, P̃ , ✏, ⌘̃ẑ, b̃

z
ẑ
�
, (3.1)

where b̃
µ = (0,~bT , b̃z). To study an unpolarized Collins TMD, we must set � = �

+ in
eq. (2.19). To compare this to the quasi-TMD, we must take �̃ = �

0 or �
z, which require

normalization factors

N�z = 1 , N�0 =
P̃

z

P̃ 0
= tanh(yP̃ )

yP̃�1

= 1 . (3.2)

We can decompose the coordinate-space correlator with arbitrary b, P, v and � into Lorentz-
covariant structures as3

⌦[�µ
]

qi/h
(b, P, ✏, ⌘̃v, �) = P

µ⌦qi/h +
b
µ

�b2
⌦b
qi/h

+
v
µ
p

P 2

p
|v|2

⌦v
qi/h

+
�
µ

�b2
⌦�
qi/h

= P
µ⌦qi/h + higher twist , (3.3)

3For the full parameterization including spin-dependent terms, see e.g. ref. [29]. Note however that they
work with the correlator ⌦ where � = 0. The more general analysis carried out with our ⌦ at � 6= 0 gives
rise to additional terms.
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TMDs differ by how 3 limits (UV, large rapidity, large ) are taken:η

SR(b, ✏, ⌘v, ⌘̄v̄) =
1

dR

D
0
���Tr

h
SR(b, ⌘v, ⌘̄v̄)

i���0
E

⌦[�]
q/h(b, P, ✏, ⌘v, �)
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Collins: 

BC
qi/h

(x,~bT , ✏, yP � yB) =

Z
db�

2⇡
e�ib�(xP+) ⌦[�+]

qi/h

⇥
b, P, ✏,�1nB(yB), b

�nb

⇤

fC
i/h(x,

~bT , µ, ⇣) = lim
✏!0

ZR
uv(✏, µ, ⇣) lim

yB!�1

BC
i/h(x,

~bT , ✏, yP � yB)
q

SR
C (bT , ✏, 2yn, 2yB)

TMD Beam function Soft function

Collins lim
✏!0

ZR
UV lim

yB!�1

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, ✏,�1nB(yB), b

�nb

⇤
SR [b?, ✏,�1nA(yA),�1nB(yB)]

LR lim
�yB�1

lim
✏!0

ZR
UV

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, ✏,�1nB(yB), b

�nb

⇤
SR [b?, ✏,�1nA(yA),�1nB(yB)]

JMY lim
v�
v+ �1

lim
✏!0

ZR
UV

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, µ,�1v, b�nb

⇤
SR [b?, µ,�1v,�1ṽ]

Quasi lim
a!0

ZUV
Bi/hp
S̃R

⌦[�0,z
]

q/h (b̃, P̃ , a, ⌘̃ẑ, b̃z ẑ) SR


b?, a,�⌘̃

nA(yA)

|nA(yA)|
,�⌘̃

nA(yA)

|nA(yA)|

�

MHENS ⌦[�]

q/h(b, P, a, ⌘v, 0)

Table 1: Overview of TMD schemes, as presented in section 2. The correlator ⌦ is a
function of Lorentz invariants constructed from its arguments. See Table. 2 for a comparison
of parameter values, Wilson line definitions, and Lorentz invariants in each scheme.

identical at large proton momenta by evaluating the quasi-TMD in a boosted frame. We
thus can move from the quasi to the LR scheme through a large rapidity expansion. In
section 3.1.3 we demonstrate that reversing the renormalization and lightcone limits to go
from the LR to the Collins scheme gives rise to a perturbative matching coefficient. The
combination of expansion and matching leads to the desired factorization relation.

3.1.1 Beam correlators as a function of Lorentz invariants

Let us begin by examining the structure of the quasi-TMD. In dimensional regularization,
the quark quasi-beam function in eq. (2.29) reads

B̃
[�̃]

qi/h
(x,~bT , ✏, ⌘̃, xP̃

z) = N
�̃

Z
db̃z

2⇡
e
ib̃z(xP̃ z

)⌦[�̃]

qi/h

�
b̃, P̃ , ✏, ⌘̃ẑ, b̃

z
ẑ
�
, (3.1)

where b̃
µ = (0,~bT , b̃z). To study an unpolarized Collins TMD, we must set � = �

+ in
eq. (2.19). To compare this to the quasi-TMD, we must take �̃ = �

0 or �
z, which require

normalization factors

N�z = 1 , N�0 =
P̃

z

P̃ 0
= tanh(yP̃ )

yP̃�1

= 1 . (3.2)

We can decompose the coordinate-space correlator with arbitrary b, P, v and � into Lorentz-
covariant structures as3

⌦[�µ
]

qi/h
(b, P, ✏, ⌘̃v, �) = P

µ⌦qi/h +
b
µ

�b2
⌦b
qi/h

+
v
µ
p

P 2

p
|v|2

⌦v
qi/h

+
�
µ

�b2
⌦�
qi/h

= P
µ⌦qi/h + higher twist , (3.3)

3For the full parameterization including spin-dependent terms, see e.g. ref. [29]. Note however that they
work with the correlator ⌦ where � = 0. The more general analysis carried out with our ⌦ at � 6= 0 gives
rise to additional terms.
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Also differ by how 3 limits (UV, large rapidity, large ) are taken:η

SR(b, ✏, ⌘v, ⌘̄v̄) =
1

dR

D
0
���Tr

h
SR(b, ⌘v, ⌘̄v̄)

i���0
E

⌦[�]
q/h(b, P, ✏, ⌘v, �)

Here, yn is an arbitrary scheme-dependent parameter that cancels in eq. (2.15). In partic-
ular, we have that ⇣1⇣2 = (2x1x2P

�
1
P

+

2
)2 = Q

2.
The Collins scheme is characterized by spacelike Wilson lines with directions

n
µ
A(yA) ⌘ n

µ
a � e

�2yAn
µ
b = (1,�e

�2yA , 0?) ,

n
µ
B(yB) ⌘ n

µ
b � e

2yBn
µ
a = (�e

2yB , 1, 0?) , (2.17)

parametrized by the rapidities yA and yB. The Collins TMD for a hadron h moving along
na with rapidity yP is

f
C
i/h(x,

~bT , µ, ⇣) = lim
✏!0

Z
R
uv(✏, µ, ⇣) lim

yB!�1

B
C
i/h(x,

~bT , ✏, yP � yB)
q
S
R
C (bT , ✏, 2yn, 2yB)

, (2.18)

where B
C
i/h is the beam function and S

R
C is the soft function. ZR

uv absorbs ✏-poles that result
from working in d = 4 � 2✏ dimensions to regulate UV divergences. Z

R
uv and S

R
C depend

on the color representation R of the parton i (fundamental R = q for quarks and adjoint
R = g for gluons) but are independent of parton flavor. We emphasize that in eq. (2.18)
the lightcone limit yB ! �1 is taken before UV renormalization.

The Collins beam and soft functions for quarks and gluons are defined as

B
C
qi/h

(x,~bT , ✏, yP � yB) =

Z
db�

2⇡
e
�ib�(xP+

)⌦[�+
]

qi/h

⇥
b, P, ✏,�1nB(yB), b

�
nb

⇤
,

B
C⇢�
g/h (x,~bT , ✏, yP � yB) =

Z
db�

2⇡

e
�ib�(xP+

)

xP+
⌦�⇢��
g/h

⇥
b, P, ✏,�1nB(yB), b

�
nb

⇤
,

S
R
C (bT , ✏, yA, yB) = S

R[b?, ✏,�1nA(yA),�1nB(yB)] , (2.19)

where ⌦i/h and S
R are the correlators in eqs. (2.7) and (2.8). The beam function path is

b = (0, b�, b?) , � = (0, b�, 0) , v = nB(yB) with |⌘| ! 1 . (2.20)

This implies that b�� = b?, and hence the Wilson line’s tranverse segment is perpendicular
to its longitudinal segments. This transverse segment is important in singular gauges [70].
Note that the transverse segment is often not specified in the literature: in nonsingular
gauges such as Feynman gauge, a Wilson line at lightcone infinity does not make contribu-
tions, and its self-energy cancels against the corresponding piece in the soft function [53].
The longitudinal Wilson line segments extend along ⌘v ±

�
2
= (⌘e2yB , ⌘ ±

�
2
, 0?) and thus

only depend on the rapidity yB in the limit |⌘| ! 1. The limit ⌘ ! �1 taken in eq. (2.19)
applies to Drell-Yan kinematics, whereas SIDIS kinematics uses ⌘ ! 1.

Finally, we remark that due to taking the lightcone limit prior to UV renormaliza-
tion, the Collins scheme is equivalent to schemes defined with rapidity regulators on the
lightcone [58, 60, 62–65] that are often employed in higher-order perturbative calculations
and higher-order resummed phenomenological analyses, see e.g. ref. [66] for a discussion.
Such equivalence can be derived from the TMD factorization formula eq. (2.2), where the
Feynman diagrams and leading-power contributions are identical for off-the-light-cone and
lightcone schemes [66].
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Here, yn is an arbitrary scheme-dependent parameter that cancels in eq. (2.15). In partic-
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i/h is the beam function and S
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C is the soft function. ZR

uv absorbs ✏-poles that result
from working in d = 4 � 2✏ dimensions to regulate UV divergences. Z

R
uv and S

R
C depend

on the color representation R of the parton i (fundamental R = q for quarks and adjoint
R = g for gluons) but are independent of parton flavor. We emphasize that in eq. (2.18)
the lightcone limit yB ! �1 is taken before UV renormalization.

The Collins beam and soft functions for quarks and gluons are defined as

B
C
qi/h

(x,~bT , ✏, yP � yB) =

Z
db�

2⇡
e
�ib�(xP+

)⌦[�+
]

qi/h

⇥
b, P, ✏,�1nB(yB), b

�
nb

⇤
,

B
C⇢�
g/h (x,~bT , ✏, yP � yB) =

Z
db�

2⇡

e
�ib�(xP+

)

xP+
⌦�⇢��
g/h

⇥
b, P, ✏,�1nB(yB), b

�
nb

⇤
,

S
R
C (bT , ✏, yA, yB) = S

R[b?, ✏,�1nA(yA),�1nB(yB)] , (2.19)

where ⌦i/h and S
R are the correlators in eqs. (2.7) and (2.8). The beam function path is

b = (0, b�, b?) , � = (0, b�, 0) , v = nB(yB) with |⌘| ! 1 . (2.20)

This implies that b�� = b?, and hence the Wilson line’s tranverse segment is perpendicular
to its longitudinal segments. This transverse segment is important in singular gauges [70].
Note that the transverse segment is often not specified in the literature: in nonsingular
gauges such as Feynman gauge, a Wilson line at lightcone infinity does not make contribu-
tions, and its self-energy cancels against the corresponding piece in the soft function [53].
The longitudinal Wilson line segments extend along ⌘v ±

�
2
= (⌘e2yB , ⌘ ±

�
2
, 0?) and thus

only depend on the rapidity yB in the limit |⌘| ! 1. The limit ⌘ ! �1 taken in eq. (2.19)
applies to Drell-Yan kinematics, whereas SIDIS kinematics uses ⌘ ! 1.

Finally, we remark that due to taking the lightcone limit prior to UV renormaliza-
tion, the Collins scheme is equivalent to schemes defined with rapidity regulators on the
lightcone [58, 60, 62–65] that are often employed in higher-order perturbative calculations
and higher-order resummed phenomenological analyses, see e.g. ref. [66] for a discussion.
Such equivalence can be derived from the TMD factorization formula eq. (2.2), where the
Feynman diagrams and leading-power contributions are identical for off-the-light-cone and
lightcone schemes [66].
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Quasi Beam: 

TMD Beam function Soft function

Collins lim
✏!0

ZR
UV lim

yB!�1

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, ✏,�1nB(yB), b

�nb

⇤
SR [b?, ✏,�1nA(yA),�1nB(yB)]

LR lim
�yB�1

lim
✏!0

ZR
UV

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, ✏,�1nB(yB), b

�nb

⇤
SR [b?, ✏,�1nA(yA),�1nB(yB)]

JMY lim
v�
v+ �1

lim
✏!0

ZR
UV

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, µ,�1v, b�nb

⇤
SR [b?, µ,�1v,�1ṽ]

Quasi lim
a!0

ZUV
Bi/hp
S̃R

⌦[�0,z
]

q/h (b̃, P̃ , a, ⌘̃ẑ, b̃z ẑ) SR


b?, a,�⌘̃

nA(yA)

|nA(yA)|
,�⌘̃

nA(yA)

|nA(yA)|

�

MHENS ⌦[�]

q/h(b, P, a, ⌘v, 0)

Table 1: Overview of TMD schemes, as presented in section 2. The correlator ⌦ is a
function of Lorentz invariants constructed from its arguments. See Table. 2 for a comparison
of parameter values, Wilson line definitions, and Lorentz invariants in each scheme.

identical at large proton momenta by evaluating the quasi-TMD in a boosted frame. We
thus can move from the quasi to the LR scheme through a large rapidity expansion. In
section 3.1.3 we demonstrate that reversing the renormalization and lightcone limits to go
from the LR to the Collins scheme gives rise to a perturbative matching coefficient. The
combination of expansion and matching leads to the desired factorization relation.

3.1.1 Beam correlators as a function of Lorentz invariants

Let us begin by examining the structure of the quasi-TMD. In dimensional regularization,
the quark quasi-beam function in eq. (2.29) reads

B̃
[�̃]

qi/h
(x,~bT , ✏, ⌘̃, xP̃

z) = N
�̃

Z
db̃z

2⇡
e
ib̃z(xP̃ z

)⌦[�̃]

qi/h

�
b̃, P̃ , ✏, ⌘̃ẑ, b̃

z
ẑ
�
, (3.1)

where b̃
µ = (0,~bT , b̃z). To study an unpolarized Collins TMD, we must set � = �

+ in
eq. (2.19). To compare this to the quasi-TMD, we must take �̃ = �

0 or �
z, which require

normalization factors

N�z = 1 , N�0 =
P̃

z

P̃ 0
= tanh(yP̃ )

yP̃�1

= 1 . (3.2)

We can decompose the coordinate-space correlator with arbitrary b, P, v and � into Lorentz-
covariant structures as3

⌦[�µ
]

qi/h
(b, P, ✏, ⌘̃v, �) = P

µ⌦qi/h +
b
µ

�b2
⌦b
qi/h

+
v
µ
p

P 2

p
|v|2

⌦v
qi/h

+
�
µ

�b2
⌦�
qi/h

= P
µ⌦qi/h + higher twist , (3.3)

3For the full parameterization including spin-dependent terms, see e.g. ref. [29]. Note however that they
work with the correlator ⌦ where � = 0. The more general analysis carried out with our ⌦ at � 6= 0 gives
rise to additional terms.
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Also differ by how 3 limits (UV, large rapidity, large ) are taken:η

SR(b, ✏, ⌘v, ⌘̄v̄) =
1

dR

D
0
���Tr

h
SR(b, ⌘v, ⌘̄v̄)

i���0
E

⌦[�]
q/h(b, P, ✏, ⌘v, �)

B̃[�̃]
i/h(x,

~bT , a, ⌘̃, xP̃
z) =

Z
db̃z

2⇡
eib̃

z(xP̃ z) ⌦[�̃]
qi/h

(b̃, P̃ , a, ⌘̃ẑ, b̃z ẑ)

equal time:
B̃[�̃]

i/h(x,
~bT , a, ⌘̃, xP̃

z) =

Z
db̃z

2⇡
eib̃

z(xP̃ z) ⌦[�̃]
qi/h

(b̃, P̃ , a, ⌘̃ẑ, b̃z ẑ)

a = lattice spacing (UV regulator)

b

t

z

q

q

bz

T

bz+ 2

2

bz
2-

d

˜

˜˜ ˜

Figure 4: Wilson line structure of (left) the quasi-beam function in eq. (2.29), and (right)
the MHENS scheme in eq. (2.39). Quasi-TMD staple legs extend along the z direction and
are closed by a perpendicular segment, whereas MHENS staple legs extend along a generic
spacelike direction v

µ and are closed by a segment with nontrivial cusp angle �.

Combining eqs. (2.29) and (2.31) as required by eq. (2.27) gives

f̃
[�̃]

i/h(x,
~bT , µ, ⇣̃, xP̃

z) = lim
⌘̃!1
a!0

Z
0
uv(µ, µ̃)Zuv(a, µ̃, yn � yB)

B̃
[�̃]

i/h(x,
~bT , a, ⌘̃, xP̃

z)
q

S̃R(bT , a, ⌘̃, 2yn, 2yB)

= lim
⌘̃!1

B̃
[�̃]

i/h(x,
~bT , µ, ⌘̃, xP̃

z)
q

S̃R(bT , µ, ⌘̃, 2yn, 2yB)
. (2.32)

Here ⇣̃ =
�
xmhe

yP̃+yB�yn
�
2
= (2xP̃ z

e
yB�yn)2, and the second equality holds for large P̃

z.
In practice, calculating (quasi-)TMD soft functions poses a significant challenge for the

lattice. It is possible to construct the quasi-soft function indirectly through the spacelike
meson form factor and quasi-wavefunction [38]; promising first results using this approach
have been reported in refs. [46, 47].

Prior to this work, the literature has studied different proposals of the quasi-soft func-
tion which are constructed from equal-time Wilson lines [33–36, 38, 39]. The naive quasi-soft
function features a rectangle-shaped Wilson loop along the z direction,

S̃
R
naive(bT , a, ⌘̃) ⌘ S

R
⇥
b?, a, ⌘̃ẑ,�⌘̃ẑ

⇤
, (2.33)

whose renormalized continuum version with ⌘̃ = 1 in the MS scheme is denoted

S̃
R
naive(bT , µ) ⌘ S

R
⇥
b?, µ,1ẑ,�1ẑ

⇤
. (2.34)

However, it has been shown at one-loop level [36] that S̃
R
naive

(bT , µ) does not have the
correct IR physics for the quasi-TMD to be perturbatively matchable to the Collins TMD.
Although Refs. [34, 36] proposed a bent quasi-soft function that works at one-loop order, it
was argued that the factorization utilizing this function will break down at two loops [38].
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Quasi TMD: 

Finite  Collins soft functionη

TMD Beam function Soft function

Collins lim
✏!0

ZR
UV lim

yB!�1

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, ✏,�1nB(yB), b

�nb

⇤
SR [b?, ✏,�1nA(yA),�1nB(yB)]

LR lim
�yB�1

lim
✏!0

ZR
UV

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, ✏,�1nB(yB), b

�nb

⇤
SR [b?, ✏,�1nA(yA),�1nB(yB)]

JMY lim
v�
v+ �1

lim
✏!0

ZR
UV

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, µ,�1v, b�nb

⇤
SR [b?, µ,�1v,�1ṽ]

Quasi lim
a!0

ZUV
Bi/hp
S̃R

⌦[�0,z
]

q/h (b̃, P̃ , a, ⌘̃ẑ, b̃z ẑ) SR


b?, a,�⌘̃

nA(yA)

|nA(yA)|
,�⌘̃

nA(yA)

|nA(yA)|

�

MHENS ⌦[�]

q/h(b, P, a, ⌘v, 0)

Table 1: Overview of TMD schemes, as presented in section 2. The correlator ⌦ is a
function of Lorentz invariants constructed from its arguments. See Table. 2 for a comparison
of parameter values, Wilson line definitions, and Lorentz invariants in each scheme.

identical at large proton momenta by evaluating the quasi-TMD in a boosted frame. We
thus can move from the quasi to the LR scheme through a large rapidity expansion. In
section 3.1.3 we demonstrate that reversing the renormalization and lightcone limits to go
from the LR to the Collins scheme gives rise to a perturbative matching coefficient. The
combination of expansion and matching leads to the desired factorization relation.

3.1.1 Beam correlators as a function of Lorentz invariants

Let us begin by examining the structure of the quasi-TMD. In dimensional regularization,
the quark quasi-beam function in eq. (2.29) reads

B̃
[�̃]

qi/h
(x,~bT , ✏, ⌘̃, xP̃

z) = N
�̃

Z
db̃z

2⇡
e
ib̃z(xP̃ z

)⌦[�̃]

qi/h

�
b̃, P̃ , ✏, ⌘̃ẑ, b̃

z
ẑ
�
, (3.1)

where b̃
µ = (0,~bT , b̃z). To study an unpolarized Collins TMD, we must set � = �

+ in
eq. (2.19). To compare this to the quasi-TMD, we must take �̃ = �

0 or �
z, which require

normalization factors

N�z = 1 , N�0 =
P̃

z

P̃ 0
= tanh(yP̃ )

yP̃�1

= 1 . (3.2)

We can decompose the coordinate-space correlator with arbitrary b, P, v and � into Lorentz-
covariant structures as3

⌦[�µ
]

qi/h
(b, P, ✏, ⌘̃v, �) = P

µ⌦qi/h +
b
µ

�b2
⌦b
qi/h

+
v
µ
p

P 2

p
|v|2

⌦v
qi/h

+
�
µ

�b2
⌦�
qi/h

= P
µ⌦qi/h + higher twist , (3.3)

3For the full parameterization including spin-dependent terms, see e.g. ref. [29]. Note however that they
work with the correlator ⌦ where � = 0. The more general analysis carried out with our ⌦ at � 6= 0 gives
rise to additional terms.
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Also differ by how 3 limits (UV, large rapidity, large ) are taken:η

SR(b, ✏, ⌘v, ⌘̄v̄) =
1

dR

D
0
���Tr

h
SR(b, ⌘v, ⌘̄v̄)

i���0
E

⌦[�]
q/h(b, P, ✏, ⌘v, �)

f̃ [�̃]
i/h(x,

~bT , µ, ⇣̃, xP̃
z) = lim

⌘̃!1
a!0

Z 0
uv(µ, µ̃)Zuv(a, µ̃, yn � yB)

B̃[�̃]
i/h(x,

~bT , a, ⌘̃, xP̃ z)
q
SR

⇥
b?, a,�⌘̃ nA(yA)

|nA(yA)| ,�⌘̃ nB(yB)
|nB(yB)|

⇤

 (In ratio: limit  exists)η̃ → ∞ 19



LR scheme:   new,  
                       differs from Collins only by order of (UV & rapidity) limits,  
                       useful for our proof

TMD Beam function Soft function

Collins lim
✏!0

ZR
UV lim

yB!�1

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, ✏,�1nB(yB), b

�nb

⇤
SR [b?, ✏,�1nA(yA),�1nB(yB)]

LR lim
�yB�1

lim
✏!0

ZR
UV

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, ✏,�1nB(yB), b

�nb

⇤
SR [b?, ✏,�1nA(yA),�1nB(yB)]

JMY lim
v�
v+ �1

lim
✏!0

ZR
UV

⌦i/hp
SR

⌦[�+
]

q/h

⇥
b, P, µ,�1v, b�nb

⇤
SR [b?, µ,�1v,�1ṽ]

Quasi lim
a!0

ZUV
Bi/hp
S̃R

⌦[�0,z
]

q/h (b̃, P̃ , a, ⌘̃ẑ, b̃z ẑ) SR


b?, a,�⌘̃

nA(yA)

|nA(yA)|
,�⌘̃

nA(yA)

|nA(yA)|

�

MHENS ⌦[�]

q/h(b, P, a, ⌘v, 0)

Table 1: Overview of TMD schemes, as presented in section 2. The correlator ⌦ is a
function of Lorentz invariants constructed from its arguments. See Table. 2 for a comparison
of parameter values, Wilson line definitions, and Lorentz invariants in each scheme.

identical at large proton momenta by evaluating the quasi-TMD in a boosted frame. We
thus can move from the quasi to the LR scheme through a large rapidity expansion. In
section 3.1.3 we demonstrate that reversing the renormalization and lightcone limits to go
from the LR to the Collins scheme gives rise to a perturbative matching coefficient. The
combination of expansion and matching leads to the desired factorization relation.

3.1.1 Beam correlators as a function of Lorentz invariants

Let us begin by examining the structure of the quasi-TMD. In dimensional regularization,
the quark quasi-beam function in eq. (2.29) reads

B̃
[�̃]

qi/h
(x,~bT , ✏, ⌘̃, xP̃

z) = N
�̃

Z
db̃z

2⇡
e
ib̃z(xP̃ z

)⌦[�̃]

qi/h

�
b̃, P̃ , ✏, ⌘̃ẑ, b̃

z
ẑ
�
, (3.1)

where b̃
µ = (0,~bT , b̃z). To study an unpolarized Collins TMD, we must set � = �

+ in
eq. (2.19). To compare this to the quasi-TMD, we must take �̃ = �

0 or �
z, which require

normalization factors

N�z = 1 , N�0 =
P̃

z

P̃ 0
= tanh(yP̃ )

yP̃�1

= 1 . (3.2)

We can decompose the coordinate-space correlator with arbitrary b, P, v and � into Lorentz-
covariant structures as3

⌦[�µ
]

qi/h
(b, P, ✏, ⌘̃v, �) = P

µ⌦qi/h +
b
µ

�b2
⌦b
qi/h

+
v
µ
p

P 2

p
|v|2

⌦v
qi/h

+
�
µ

�b2
⌦�
qi/h

= P
µ⌦qi/h + higher twist , (3.3)

3For the full parameterization including spin-dependent terms, see e.g. ref. [29]. Note however that they
work with the correlator ⌦ where � = 0. The more general analysis carried out with our ⌦ at � 6= 0 gives
rise to additional terms.
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SR(b, ✏, ⌘v, ⌘̄v̄) =
1

dR

D
0
���Tr

h
SR(b, ⌘v, ⌘̄v̄)

i���0
E

⌦[�]
q/h(b, P, ✏, ⌘v, �)
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Quasi MHENS

Collins JMY

LR

Lattice schemes

Continuum schemes

Change Wilson lines

Pz large, η ➝ ∞

Switch order of  
ε ➝ 0, Y ➝ ∞

Matching 
relations

Continuum  
limits

Figure 1: An overview of schemes and their relationships, including the LR scheme intro-
duced in this work. See section 3 for details.

~qT with qT = |~qT |. For qT ⌧ Q, we can factorize the cross-section of eq. (2.1) as [50–53]

d�

dQ2dY d2~qT
= �0

X

i,j

Hij(Q, . . . )

Z
d2~bT
(2⇡)2

e
i~qT ·~bT fi/h1

�
x1,

~bT , . . .
�
fj/h2

�
x2,

~bT , . . .
�
. (2.2)

Here, �0 is the Born cross-section; the sum runs over all parton flavors i, j contributing to the
Born process ij ! L; Hij is the hard function, which encodes virtual corrections to the Born
process; and fi/h are the TMDs, functions which describe the dynamics of partonic quarks
and gluons inside the parent hadron h. A struck hadron carries a fraction x1,2 = Qe

±Y
/Ecm

of its parent hadron’s longitudinal momentum, with Ecm =
p
(P1 + P2)2 the center-of-mass

energy of the incoming hadrons. The ellipses in eq. (2.1) denote additional parameters
related to UV and rapidity renormalization, whose precise forms are scheme dependent.
Note that we suppress indices related to spin-dependent processes and contributions.

The literature is rife with schemes for defining TMDs, each of which has different
strengths for different types of calculations. This section reviews schemes relevant for lattice
studies; in particular, we only discuss schemes based on off-lightcone Wilson lines. Schemes
with intrinsically lightlike Wilson lines [58, 60, 62–65] are not accessible on a Euclidean
lattice, but many are equivalent to the Collins scheme once limits needed to obtain TMD
PDFs are taken; see refs. [36, 66] for an overview. Because each scheme in the literature
employs its own conventions and notation, in section 2.1 we begin by introducing new unified
TMD Lorentz-invariant correlators for which all schemes follow as special cases. Then, we
provide definitions of physical and lattice schemes in sections 2.2 and 2.3, respectively.

2.1 Unified TMD notation

A TMD fi/h generally contains two pieces: a hadronic matrix element (called the beam
function or unsubtracted TMD), which encodes partonic radiation associated with the initial
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Steps:

Proof

1. Quasi  LR:  related by large rapidity  
                         IF we properly map variables,


                            take 

2. LR  Collins:  UV ren. & non-trivial Matching coefficient

→ (Pz ≫ ΛQCD)

|η | → ∞
→

1.

2.
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Step 1
Collins / LR JMY Quasi MHENS

bµ (0, b�, b?) (0, b�, b?) (0, bxT , b
y
T , b̃

z) (0, bxT , b
y
T , b̃

z)

vµ (�e2yB , 1, 0?) (v�e2y
0
B , v�, 0?) (0, 0, 0,�1) (0, vx, vy, vz)

�µ (0, b�, 0?) (0, b�, 0?) (0, 0, 0, b̃z) (0, 0, 0?)

Pµ mhp
2
(eyP , e�yP , 0?)

mhp
2
(eyP , e�yP , 0?) mh(cosh yP̃ , 0, 0, sinh yP̃ ) mh

⇣
cosh yP ,

Px

mh
,
P y

mh
, sinh yP

⌘

b2 �b2T �b2T �b2T � (b̃z)2 �b2T � (b̃z)2

(⌘v)2 �2⌘2e2yB 2⌘2(v�)2e2y
0
B �⌘̃2 �⌘2~v 2

P · b mhp
2
b�eyP

mhp
2
b�eyP �mhb̃

z sinh yP̃ mh sinh yP b̃
z + P xbxT + P ybyT

b · (⌘v)p
|(⌘v)2b2|

� b�eyBp
2 bT

sgn(⌘)
b�ey

0
B

p
2 bT

sgn(⌘)
b̃zq

(b̃z)2 + b2T

sgn(⌘)
bxT v

x + byT v
y + b̃zvz

p
v2T + (vz)2

q
b2T + (b̃z)2

P · (⌘v)p
P 2|⌘v|2

sinh(yP �yB) sgn(⌘) cosh(yP �y0
B) sgn(⌘) sinh yP̃ sgn(⌘)

P xvx + P yvy +mhv
z sinh yPp

v2T + (vz)2
p

m2

h + P 2
x + P 2

y

�2

b2
0 0

(b̃z)2

b2T + (b̃z)2
0

b · �
b2

0 0
(b̃z)2

b2T + (b̃z)2
0

P · �
P · b 1 1 1 0

� · (⌘v)
b · (⌘v) 1 1 1 0

P 2 m2

h m2

h m2

h m2

h

Table 2: Overview of the Lorentz invariants entering the generic TMD correlator as spec-
ified by eq. (2.11). Note that the Collins and LR schemes use the same four-vectors.

where the dimensionless form factors ⌦ on the right-hand side are functions of the 10
Lorentz invariants in eq. (2.11), which we suppress for brevity. The prefactors share the
same mass dimension and are finite as � ! 0 or b · v/

p
|v2b2| ! 0. In the second line,

we neglect terms that are suppressed at large momentum P , which do not contribute at
leading power.

Combining eqs. (3.1) and (3.3) and using P̃? = 0, we have

B̃
[�̃]

qi/h
(x,~bT , ✏, ⌘̃, xP̃

z) =

Z
d(b̃ · P̃ )

2⇡
e
�ix(b̃·P̃ )⌦qi/h

�
b̃, P̃ , ✏, ⌘̃ẑ, b̃

z
ẑ
�
. (3.4)

Note that the integration measure, the Fourier phase, and ⌦qi/h are Lorentz invariants. We
can write the LR/Collins beam function similarly:

B
C
qi/h

(x,~bT , ✏, yP � yB) =

Z
d(b · P )

2⇡
e
�ix(b·P )⌦qi/h

⇥
b, P, ✏,�1nB(yB), b

�
nb

⇤
. (3.5)
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Collins / LR JMY Quasi MHENS
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ẑ
�
. (3.4)

Note that the integration measure, the Fourier phase, and ⌦qi/h are Lorentz invariants. We
can write the LR/Collins beam function similarly:

B
C
qi/h

(x,~bT , ✏, yP � yB) =

Z
d(b · P )

2⇡
e
�ix(b·P )⌦qi/h

⇥
b, P, ✏,�1nB(yB), b

�
nb

⇤
. (3.5)

– 19 –

Collins / LR JMY Quasi MHENS

bµ (0, b�, b?) (0, b�, b?) (0, bxT , b
y
T , b̃

z) (0, bxT , b
y
T , b̃

z)

vµ (�e2yB , 1, 0?) (v�e2y
0
B , v�, 0?) (0, 0, 0,�1) (0, vx, vy, vz)

�µ (0, b�, 0?) (0, b�, 0?) (0, 0, 0, b̃z) (0, 0, 0?)

Pµ mhp
2
(eyP , e�yP , 0?)

mhp
2
(eyP , e�yP , 0?) mh(cosh yP̃ , 0, 0, sinh yP̃ ) mh

⇣
cosh yP ,

Px

mh
,
P y

mh
, sinh yP

⌘

b2 �b2T �b2T �b2T � (b̃z)2 �b2T � (b̃z)2

(⌘v)2 �2⌘2e2yB 2⌘2(v�)2e2y
0
B �⌘̃2 �⌘2~v 2

P · b mhp
2
b�eyP

mhp
2
b�eyP �mhb̃

z sinh yP̃ mh sinh yP b̃
z + P xbxT + P ybyT

b · (⌘v)p
|(⌘v)2b2|

� b�eyBp
2 bT

sgn(⌘)
b�ey

0
B

p
2 bT

sgn(⌘)
b̃zq

(b̃z)2 + b2T

sgn(⌘)
bxT v

x + byT v
y + b̃zvz

p
v2T + (vz)2

q
b2T + (b̃z)2

P · (⌘v)p
P 2|⌘v|2

sinh(yP �yB) sgn(⌘) cosh(yP �y0
B) sgn(⌘) sinh yP̃ sgn(⌘)

P xvx + P yvy +mhv
z sinh yPp

v2T + (vz)2
p

m2

h + P 2
x + P 2

y

�2

b2
0 0

(b̃z)2

b2T + (b̃z)2
0

b · �
b2

0 0
(b̃z)2

b2T + (b̃z)2
0

P · �
P · b 1 1 1 0

� · (⌘v)
b · (⌘v) 1 1 1 0

P 2 m2

h m2

h m2

h m2

h

Table 2: Overview of the Lorentz invariants entering the generic TMD correlator as spec-
ified by eq. (2.11). Note that the Collins and LR schemes use the same four-vectors.

where the dimensionless form factors ⌦ on the right-hand side are functions of the 10
Lorentz invariants in eq. (2.11), which we suppress for brevity. The prefactors share the
same mass dimension and are finite as � ! 0 or b · v/

p
|v2b2| ! 0. In the second line,

we neglect terms that are suppressed at large momentum P , which do not contribute at
leading power.

Combining eqs. (3.1) and (3.3) and using P̃? = 0, we have

B̃
[�̃]

qi/h
(x,~bT , ✏, ⌘̃, xP̃

z) =

Z
d(b̃ · P̃ )

2⇡
e
�ix(b̃·P̃ )⌦qi/h

�
b̃, P̃ , ✏, ⌘̃ẑ, b̃
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sinh(yP − yB) = sinh yP̃

⇒ yP̃ = yP − yB
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yP , b− finite
Note that we could have alternatively demonstrated the equivalence of the quasi- and

LR/Collins Lorentz invariants by transforming b̃
z, yP , and ⌘̃ from the values in table 2 to

those in eq. (3.8), and then applying the limit yB ! �1. For example,

P̃ · b̃ = �mhb̃
z sinh yP̃ = mh

p
2eyBb� sinh(yP � ỹB)
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By definition, the Lorentz invariants of a TMD remain unchanged by Lorentz boosts.
If we expand the quasi-TMD invariants in the boosted frame at large �yB around those of
the LR/Collins scheme, we can write a relationship between correlators:
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���
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���
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, (3.12)
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⌦qi/h(b, P, ✏, ⌘nB(yB), b
�
nb)

���
Collins/LR

.

Making the parameterizations of b and P in both schemes explicit and shifting yP̃ ! yP�yB

(this is not a boost, but rather a change in the parametrization of the proton’s momentum)
we obtain
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Here, the first correlator yields the quasi-beam function at the shifted proton momentum,
while the second correlator is that of the Collins/LR scheme at finite length

⌘ = �
⌘̃e

�yB
p
2

. (3.14)

Note that ⌘ and ⌘̃ always have opposite signs, and that ⌘ < 0 corresponds to the TMD
PDF for Drell-Yan, while ⌘ > 0 corresponds to the TMD PDF for SIDIS.

Next, we supplement eq. (3.13) with a soft subtraction and UV renormalization. On
the lattice we cannot take the strict limit yB ! �1, so we must keep yB large but finite.
The Collins scheme entails taking the lightcone limit of B/

p
S prior to UV renormalization,

but here we must renormalize at finite yB. Up until this point, all statements we made hold
for both the bare Collins and LR schemes, but for the remainder of this subsection, we only
compare the renormalized quasi- and LR TMDs. Let us now write the renormalized quasi-
and LR TMDs as
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, (3.15)
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P̃z = mh sinh yP̃ ≫ ΛQCD

Boost quasi by yB = yP − yP̃

(yP̃ → ∞, yB → − ∞)
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Lorentz invariants in eq. (2.11), which we suppress for brevity. The prefactors share the
same mass dimension and are finite as � ! 0 or b · v/
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η̃ = 2eyB η

b̃z

bT
=

2b−eyB

bT

Note that we could have alternatively demonstrated the equivalence of the quasi- and
LR/Collins Lorentz invariants by transforming b̃

z, yP , and ⌘̃ from the values in table 2 to
those in eq. (3.8), and then applying the limit yB ! �1. For example,

P̃ · b̃ = �mhb̃
z sinh yP̃ = mh

p
2eyBb� sinh(yP � yB)

yB!�1
�!

mh
p
2
b
�
e
yP ,

�
2

b̃2
=

1

1 + (bT /b̃z)2
=

1

1 +
⇣
bT e�yBp

2b�

⌘
2

yB!�1
�! 0 . (3.11)

By definition, the Lorentz invariants of a TMD remain unchanged by Lorentz boosts.
If we expand the quasi-TMD invariants in the boosted frame at large �yB around those of
the LR/Collins scheme, we can write a relationship between correlators:

⌦qi/h(b̃, P̃ , ✏, ⌘̃ẑ, b̃
z
ẑ)
���
quasi

= ⌦qi/h(b̃, P̃ , ✏, ⌘̃ẑ, b̃
z
ẑ)
���
boosted quasi

, (3.12)

lim
yB⌧�1

⌦qi/h(b̃, P̃ , ✏, ⌘̃ẑ, b̃
z
ẑ)
���
boosted quasi

= lim
yB⌧�1

⌦qi/h(b, P, ✏, ⌘nB(yB), b
�
nb)

���
Collins/LR

.

Making the parameterizations of b and P in both schemes explicit and shifting yP̃ ! yP�yB

(this is not a boost, but rather a change in the parametrization of the proton’s momentum)
we obtain

lim
yB⌧�1

⌦qi/h

h
b̃=(0,~bT ,�

p
2b�eyB ), P̃ =

mh

2

�
e
yP�yB , e

�(yP�yB)
, 0?

�
, ✏, ⌘̃ẑ, b̃

z
ẑ

i

= lim
yB⌧�1

⌦qi/h


b=(0, b�, b?), P =

mh

2

�
e
yP , e

�yP , 0?
�
, ✏, �

⌘̃e
�yB
p
2

nB(yB), b
�
nb

�
. (3.13)

Here, the first correlator yields the quasi-beam function at the shifted proton momentum,
while the second correlator is that of the Collins/LR scheme at finite length

⌘ = �
⌘̃e

�yB
p
2

. (3.14)

Note that ⌘ and ⌘̃ always have opposite signs, and that ⌘ < 0 corresponds to the TMD
PDF for Drell-Yan, while ⌘ > 0 corresponds to the TMD PDF for SIDIS.

Next, we supplement eq. (3.13) with a soft subtraction and UV renormalization. On
the lattice we cannot take the strict limit yB ! �1, so we must keep yB large but finite.
The Collins scheme entails taking the lightcone limit of B/

p
S prior to UV renormalization,

but here we must renormalize at finite yB. Up until this point, all statements we made hold
for both the bare Collins and LR schemes, but for the remainder of this subsection, we only
compare the renormalized quasi- and LR TMDs. Let us now write the renormalized quasi-
and LR TMDs as

f̃qi/h(x,
~bT , µ, ⇣̃, xP̃

z
, ⌘̃)

=

Z
d(P̃ ·b̃)

2⇡
e
�ix(P̃ ·b̃) lim

✏!0

Z
q
uv(µ, ✏, yn � yB)

⌦qi/h(b̃, P̃ , ✏, ⌘̃ẑ, b̃
z
ẑ)

q
S̃q(bT , ✏, ⌘̃, 2yn, 2yB)

, (3.15)
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ζ̃ = ζAlso

25



Step 1  Quasi  LR→

Quasi and LR have same UV renormalization

Quasi and LR have same  limitη̃ → ∞

26

Thus Quasi = LR after expansion

f̃ [�̃]
i/h(x,

~bT , µ, ⇣̃, xP̃
z) = lim

⌘̃!1
a!0

Z 0
uv(µ, µ̃)Zuv(a, µ̃, yn � yB)

B̃[�̃]
i/h(x,

~bT , a, ⌘̃, xP̃ z)
q
SR

⇥
b?, a,�⌘̃ nA(yA)

|nA(yA)| ,�⌘̃ nB(yB)
|nB(yB)|

⇤



Step 2

LR and Collins differ by order of  and  limitsyB → − ∞ ϵ → 0

LaMET:  this induces a matching coefficient  

f̃qi/h(x,
~bT , µ, ⇣̃, xP̃

z) = Cq(xP̃
z, µ)fqi/h(x,

~bT , µ, ⇣̃) +O(ỹkP e
�ỹP )

f̃qi/h(x,
~bT , µ, ⇣̃, xP̃

z) = Cq(xP̃
z, µ)fqi/h(x,

~bT , µ, ⇣̃) +O(ỹkP e
�ỹP )

standard CS evolution

27

Quasi=LR  Collins→

f̃qi/h(x,
~bT , µ, ⇣̃, xP̃

z) = Cq(xP̃
z, µ) exp

"
1

2
�q
⇣ (µ, bT ) ln

⇣̃

⇣

#
fqi/h(x,

~bT , µ, ⇣) +O(ỹkP e
�ỹP )



Result

✓⇥

⇢
1 +O


bT
⌘̃
,

1

x̃P z ⌘̃
,

1

(xP̃ zbT )2
,
⇤2
QCD

(xP̃ z)2

��

Same steps work for any spin structure  & for gluon TMDs

Also cross-checked all properties at 1-loop ✔

Ebert, Schindler, IS, Zhao (arXiv:2201.08401) 

28

f̃i/h(x,~bT , µ, ⇣̃, xP̃
z, ⌘̃) = Ci

�
xP̃ z, µ

�
exp


1

2
�i
⇣(µ, bT ) ln

⇣̃

⇣

�
fC
i/h(x,

~bT , µ, ⇣)



Implications

f̃i/h(x,~bT , µ, ⇣̃, xP̃
z, ⌘̃) = Ci

�
xP̃ z, µ

�
exp


1

2
�q
⇣ (µ, bT ) ln

⇣̃

⇣

�
fC
i/h(x,

~bT , µ, ⇣)⇥

⇢
1 +O


1

(xP̃ zbT )2
,
⇤2
QCD

(xP̃ z)2

��

Extract CS Kernel from ratios of quasi-TMDs  (Ebert, IS, Zhao ’18) •
No mixing of flavors, quarks and gluons, or spin structures  

(except perhaps by lattice-fermion discretization) 
•

• Ratios can be calculated in x-spacethe Collins scheme. In particular we have

f̃
[�̃1]

qi/h
(x,~bT , µ, ⇣̃, xP̃ z)

f̃
[�̃2]

qj/h0(x,~bT , µ, ⇣̃, xP̃ z)
= lim

⌘̃!1

B̃
[�̃1]

qi/h
(x,~bT , µ, ⌘̃, xP̃ z)

B̃
[�̃2]
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Here qi and qj can be different quark flavors, h and h
0 can be different hadrons, and the

superscripts can be different spin structures with Dirac matrices �1
, �2 for quark (quasi-)

TMDs and Lorentz indices µk, ⌫k, ⇢k,�k with k = 1, 2 for gluon (quasi-)TMDs.
To calculate the ratios in eq. (3.37) as a function of x, one must first compute the matrix

elements for the quasi-beam functions at all bz, then take the Fourier transform. Because
UV divergences in the bare quasi-beam function matrix elements are b

z-independent, they
factor out of the Fourier integral. So, in principle we can skip renormalization and matching
to the MS scheme when calculating TMD ratios, if there are no b

z-dependent finite oper-
ator mixings on the discretized lattice. However, in the presence of such mixings, lattice
renormalization is necessary, as studied in Refs. [43, 73]. Also, in numerical analyses it can
be advantageous to consider the ⌘̃ ! 1 limit separately for the numerator and denominator
of eq. (3.37) separately. This can be accomplished by utilizing the naive quasi-soft function
or quasi-beam function at b

z = 0 to cancel the large ⌘̃-dependence.

3.2.4 Matching MHENS and continuum TMDs
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been used to study matrix elements evaluated at P · b = 0 [27–32]. In this case, the equal-
time-restricted Wilson line path in the MHENS beam function is the same as that of the
quasi-beam function. This is easily seen by comparing the integral over x of the MHENS
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z
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The first quasi-TMD here has x-dependence in three of its arguments (two written explicitly
and the other in ⇣̃), so it is convenient to write the x-independent result as a new function,
whose distinction is tagged by the first b

z = 0 argument. We adopt the same notation
for the MHENS TMD, as shown. Given this correspondence, we can simply adopt the
same terms used in defining the quasi-TMD in eq. (2.27) to define a renormalized and soft
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present in Cq, we can utilize Cq[↵s(µ)] = 1 together with the two-loop cusp anomalous
dimension, and one-loop regular anomalous dimension. Using the notation of Ref. [77] for
evolution kernels, the matching coefficient at NLL is then

Cq
�
xP̃

z
, µ

�
NLL

= exp
h
� 2Kq

�

�
2xP̃ z

, µ
�
�K

q
�

�
2xP̃ z

, µ
�i

, (3.36)

K
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0
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1�

1

r
� ln r

⌘
+
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�q
1

�q
0

�
�1

�0

◆
(1� r + ln r) +

�1

2�0
ln2 r

�
,

K
q
�(µ0, µ) = �

�
q
C0

2�0
ln r ,

where r = ↵s(µ)/↵s(µ0). Expanding we find agreement with an earlier O(↵2
s) analysis for

the terms we can predict at NLL, given by all the O(↵2
s ln

j 2xP̃ z

µ ) terms with j = 2, 3, 4 in
Eqs.(25,26) of Ref. [39]. Equation (3.36) can be expanded to higher orders in ↵s, and then
predicts the terms in lnCq(xP̃ z

, µ) of the form ↵
j
s ln

j+1 2xP̃ z

µ and ↵
j
s ln

j 2xP̃ z

µ for any j.
Results for Cq(xP̃ z

, µ) beyond NLL can be obtained from eq. (3.34) by substituting
in higher order results for the anomalous dimensions and boundary condition. (Results
for K

q
�

and K
q
� in terms of anomalous dimensions can be found in many places in the

literature to order N3LL, see also ref. [78] for an exact solution.) An RGE equation in the
form in eq. (3.28) will also hold for the xP̃

z anomalous dimension for the gluon TMD, so a
resummed formula for its matching coefficient Cg(xP̃ z

, µ) is given by the above expressions
with q ! g and replacement by the gluon cusp and non-cusp anomalous dimensions.

3.2.3 Ratios of quasi-TMDs

The lack of mixing in the factorization formula eq. (1.2) for quasi-TMDs allows us to calcu-
late ratios of TMDs of all flavor and spin structures more easily since there are cancellations
between the numerator and denominators. This approach of studying ratios was pioneered
in the Lorentz-invariant method of Refs. [27, 28] using the MHENS scheme. This has been
shown to have great utility for exploring ratios involving an integral over x and different spin
and flavor choices [28–32]. We return to discuss the prospects for including renormalization
and matching corrections in the MHENS scheme approach in section 3.2.4.

For quasi-TMDs the ability to more easily calculate ratios of spin dependent structure
functions was observed for quark non-singlet distributions in Refs. [40, 41], and occur due
to the universality of the quasi-TMD to Collins-TMD matching coefficient. Our result in
eq. (1.2) enable us to extend these observations to all orders in ↵s, and include singlet
quark distributions and gluon distributions. Since the quasi soft factor �̃R in eq. (2.27)
and the matching coefficients Cq,g in eq. (1.2) only depend on the color representation, we
can formulate ratios of quark or gluon quasi-TMDs where these components cancel, and
thus immediately can be related to the analogous ratios for the quark and gluon TMDs in
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Table 2: Overview of the Lorentz invariants entering the generic TMD correlator as spec-
ified by eq. (2.11). Note that the Collins and LR schemes use the same four-vectors.

where the dimensionless form factors ⌦ on the right-hand side are functions of the 10
Lorentz invariants in eq. (2.11), which we suppress for brevity. The prefactors share the
same mass dimension and are finite as � ! 0 or b · v/

p
|v2b2| ! 0. In the second line,

we neglect terms that are suppressed at large momentum P , which do not contribute at
leading power.

Combining eqs. (3.1) and (3.3) and using P̃? = 0, we have

B̃
[�̃]

qi/h
(x,~bT , ✏, ⌘̃, xP̃

z) =

Z
d(b̃ · P̃ )

2⇡
e
�ix(b̃·P̃ )⌦qi/h

�
b̃, P̃ , ✏, ⌘̃ẑ, b̃

z
ẑ
�
. (3.4)

Note that the integration measure, the Fourier phase, and ⌦qi/h are Lorentz invariants. We
can write the LR/Collins beam function similarly:

B
C
qi/h

(x,~bT , ✏, yP � yB) =

Z
d(b · P )

2⇡
e
�ix(b·P )⌦qi/h
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b, P, ✏,�1nB(yB), b

�
nb

⇤
. (3.5)
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Note that the integration measure, the Fourier phase, and ⌦qi/h are Lorentz invariants. We
can write the LR/Collins beam function similarly:
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Table 2: Overview of the Lorentz invariants entering the generic TMD correlator as spec-
ified by eq. (2.11). Note that the Collins and LR schemes use the same four-vectors.
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ẑ
�
. (3.4)

Note that the integration measure, the Fourier phase, and ⌦qi/h are Lorentz invariants. We
can write the LR/Collins beam function similarly:

B
C
qi/h

(x,~bT , ✏, yP � yB) =

Z
d(b · P )

2⇡
e
�ix(b·P )⌦qi/h

⇥
b, P, ✏,�1nB(yB), b

�
nb

⇤
. (3.5)

– 19 –

?

30



MHENS  Collins →

•   case,  our proof applies P ⋅ b = 0
MHENS equivalent to Quasi  (same soft fn, renormalization, …)

the Collins scheme. In particular we have

f̃
[�̃1]

qi/h
(x,~bT , µ, ⇣̃, xP̃ z)

f̃
[�̃2]
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f
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, (3.37)

f̃
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g/h0 (x,~bT , µ, ⇣̃, xP̃ z)
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f
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f
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g/h0 (x,~bT , µ, ⇣)
.

Here qi and qj can be different quark flavors, h and h
0 can be different hadrons, and the

superscripts can be different spin structures with Dirac matrices �1
, �2 for quark (quasi-)

TMDs and Lorentz indices µk, ⌫k, ⇢k,�k with k = 1, 2 for gluon (quasi-)TMDs.
To calculate the ratios in eq. (3.37) as a function of x, one must first compute the matrix

elements for the quasi-beam functions at all bz, then take the Fourier transform. Because
UV divergences in the bare quasi-beam function matrix elements are b

z-independent, they
factor out of the Fourier integral. So, in principle we can skip renormalization and matching
to the MS scheme when calculating TMD ratios, if there are no b

z-dependent finite oper-
ator mixings on the discretized lattice. However, in the presence of such mixings, lattice
renormalization is necessary, as studied in Refs. [43, 73]. Also, in numerical analyses it can
be advantageous to consider the ⌘̃ ! 1 limit separately for the numerator and denominator
of eq. (3.37) separately. This can be accomplished by utilizing the naive quasi-soft function
or quasi-beam function at b

z = 0 to cancel the large ⌘̃-dependence.

3.2.4 Matching MHENS and continuum TMDs

We now consider the relation between the MHENS lattice TMD and Collins continuum
TMD, focusing again on the quark case. In the literature, the MHENS scheme has primarily
been used to study matrix elements evaluated at P · b = 0 [27–32]. In this case, the equal-
time-restricted Wilson line path in the MHENS beam function is the same as that of the
quasi-beam function. This is easily seen by comparing the integral over x of the MHENS
beam function in eq. (2.39), with the integral over x of the quasi-beam function in eq. (2.29),
and noting that both give the same correlator ⌦[�]

q/h(
~bT , P̃ , a, ⌘̃ẑ, 0) = �̃[�]

unsubtr.(
~bT , P̃ , a, ⌘̃ẑ)

times a factor of N�/P
z. For the integral over x we define

Z
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[�]
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(x,~bT , µ, ⇣̃, xP̃

z
, ⌘̃) = f̃

[�]
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(bz = 0,~bT , µ, P̃

z
, yn � yB, ⌘̃) (3.38)

= f
[�]MHENS

qi/h
(bz = 0,~bT , µ, P̃

z
, yn � yB, ⌘̃) .

The first quasi-TMD here has x-dependence in three of its arguments (two written explicitly
and the other in ⇣̃), so it is convenient to write the x-independent result as a new function,
whose distinction is tagged by the first b

z = 0 argument. We adopt the same notation
for the MHENS TMD, as shown. Given this correspondence, we can simply adopt the
same terms used in defining the quasi-TMD in eq. (2.27) to define a renormalized and soft
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This case was focus of Musch, Hägler, Engelhardt, Negele, Schäfer

Ebert, Schindler, IS, Zhao (arXiv:2201.08401) 

•   case  (  dependence ) P ⋅ b ≠ 0 x

•  - dependent renormalization


•  - dependent soft function?

bz

bz

∝ (2 |ηv | + b̃2
z + b2

T)/aLinear:

Cusp: ∝ [3 −
2b̃z

bT
tan−1 bT

b̃z ] ln(a)

With proper lattice renormalization, Lorentz Inv. compensation,  
and construction of a suitable soft function,  
could connect MHENS to LR scheme (thus to Collins).

Additional challenges

−
b
2

b
2

vμ

b
2

+ ηv

−
b
2

+ ηv
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Quasi-TMD  Collins-TMD 
Our proof enables rigorous lattice studies

→

Lattice Targets:

• Non-perturbative CS Kernel
• Info on Spin-dependent TMDPDFs (in ratios)
• Info about 3D structure,  and   (in ratios)x bT
• proton vs. pion TMD PDFs (in ratios)

• TMD PDF with  and  (normalization) x bT

• flavor dependence of TMD PDFs (in ratios)

• Gluon TMD PDFs  

Conclusion

f̃i/h(x,~bT , µ, ⇣̃, xP̃
z, ⌘̃) = Ci

�
xP̃ z, µ

�
exp


1

2
�q
⇣ (µ, bT ) ln

⇣̃

⇣

�
fC
i/h(x,

~bT , µ, ⇣)⇥

⇢
1 +O


1

(xP̃ zbT )2
,
⇤2
QCD

(xP̃ z)2

��

Current Status of Lattice Calculations:   Yong Zhao’s talk next

• soft function for TMDs


