Extraction of e(x), other higher twist topics

Aurore Courtoy

Instituto de Física **UNAM (National Autonomous University of Mexico)**

"FORDECYT-PRONACES"

Correlations in Partonic and Hadronic Interactions 2022

Duke – hybrid March 10, 2022

Dirección General de Asuntos del Personal Académico

Higher-twist parton distribution functions

Gluon at low energy, "the glue that binds us all"?

- What are higher-twist distribution functions?
- What information do they encapsulate?
- From low-energy experiments to higher Q².

PDF kinematics coverage: collinear PDFs

One possible definition for higher-twist contributions:

terms effectively suppressed like (M/Q)^{t-2}

[Prog.Part.Nucl.Phys. 121 (2021) 103908]

Fixed Target DIS & SIDIS: M/Q is not so small

- Spurious contaminations
- Spin asymmetries can be defined to get sensitive to twist-3
- Present data: Hermes, COMPASS, JLab.

Extraction of e(x)

Higher-twist in observables

From spurious contaminations...

CJ15 global analysis includes lower cuts on W². [Accardi et al., PRD93]

HT's role in fulfilling duality [e.g. Melnitchouk et al., Phys.Rept.406]

…to genuine effects

JAM analysis of the helicity PDF g_1 extends to g_T , with $g_T=g_1+g_2$. [Sato et al., PRD93]

 $g_2^{(\tau 3)}(x, Q^2) = D(x, Q^2) - \int_x^1 \frac{dz}{z} D(z, Q^2)$

Higher-twist in observables

From spurious contaminations...

CJ15 global analysis includes lower cuts on W². [Accardi et al., PRD93]

HT's role in fulfilling duality [e.g. Melnitchouk et al., Phys.Rept.406]

…to genuine effects

JAM analysis of the helicity PDF g_1 extends to g_T , with $g_T=g_1+g_2$. [Sato et al., PRD93]

$$g_2^{(\tau 3)}(x, Q^2) = D(x, Q^2)$$

g_T is the only twist-3 PDF accessible through inclusive DIS

Exploratory studies suggest that quark-gluon-quark correlations are non-zero.

[Accardi et al, JHEP11 (2009)]

1. Parametrizing the proton matrix element, relations between scalars and moments can be found: Wandzura-Wilczek relation.

 $g_2(x) = -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y) +$ twist-2 PDF

see talks by Shohini Bhattacharya (TMDs), Simonetta Liuti (GPDs)

 $\tilde{g}_2(x)$

[e.g. Jaffe, eprint/9602236]

1. Parametrizing the proton matrix element, relations between scalars and moments can be found: Wandzura-Wilczek relation.

see talks by Shohini Bhattacharya (TMDs), Simonetta Liuti (GPDs)

 $\tilde{g}_2(x)$ [e.g. Jaffe, eprint/9602236] related to genuine qgq correlation through the equations of motion

1. Parametrizing the proton matrix element, relations between scalars and moments can be found: Wandzura-Wilczek relation.

_ight-cone dynamics imply the existence of singularities: $\delta(x)$. 2. L

$$g_2(x) = -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y) + \tilde{g}_2(x) +$$

see talks by Shohini Bhattacharya (TMDs), Simonetta Liuti (GPDs)

 $-g_{2,\delta}(x)|_{\mathrm{model}}$

[Jaffe & Ji, PRD43] [Burkardt & Koike, NPB632] [Aslan & Burkardt, PRD101] [Ji, NPB960]

Extraction of e(x)

1. Parametrizing the proton matrix element, relations between scalars and moments can be found: Wandzura-Wilczek relation.

_ight-cone dynamics imply the existence of singularities: $\delta(x)$. 2.

$$g_2(x) = -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y) + \tilde{g}_2(x) +$$

3. Mass terms:
$$g_2(x) = -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y) + \tilde{g}_2(x) + g_2(x) + g_2$$

see talks by Shohini Bhattacharya (TMDs), Simonetta Liuti (GPDs)

Scalar PDF

The composition of the scalar PDF is worked out through the EoM of QCD:

Only observable-related contribution to the proton mass: the singularity of e(x) is proportional to the pion-nucleon sigma term through sum rules [e.g. Kodaira & Tanaka, PTP, Vol. 101]

A. Courtoy—IFUNAM___

Lots of interests for that function in the past years

[Schweitzer and Efremov, JHEP08006] [Burkardt & Koike, NPB632] [Ji, NPB960] [Lorcé, Pasquini, Schweitzer, JHEP01 (2015)] [Pasquini & Rodini, PLB788] [Hatta & Zhao, PRD102] [Bhattacharya et al., PRD102]

 $(x) + e^q_{\text{mass}}(x)$

gq correlation

rom covariant derivative

quark mass term

originates from kinetic+mass

 $(0)|P\rangle$

_Extraction of e(x)__

Scalar PDF and the proton mass

QCD mass decomposition

<u>Sigma terms</u>

$$\left\langle P|m_u\bar{u}u + m_d\bar{d}d|P\right\rangle = \sigma_{\pi N}$$

^a have been determined from theoretical analysis of πN data [Meissner et al.]

- have been evaluated on the lattice [Constantinou et al.]
- ^(a) pheno analysis of e(x) could pave the way towards another possible determination

quark and gluon energy $\propto \langle x \rangle_{q,g}$

[Ji, PRL 74; Ji, PRD 52] [Lorcé, EPJC78; Lorcé et al, 2109.11785]

_Extraction of e(x)__

Scalar PDF and the proton mass

QCD mass decomposition

<u>Sigma terms</u>

$$\left\langle P|m_u\bar{u}u + m_d\bar{d}d|P\right\rangle = \sigma_{\pi N}$$

^{*} have been determined from theoretical analysis of πN data [Meissner et al.]

have been evaluated on the lattice [Constantinou et al.]

pheno analysis of e(x) could pave the way towards another possible determination

A. Courtoy-IFUNAM

quark and gluon energy $\alpha < x >_{q,g}$

[Ji, PRL 74; Ji, PRD 52] [Lorcé, EPJC78; Lorcé et al, 2109.11785]

Twist-3 in SIDIS dihadron production

Collinear framework — led to collinear transversity extraction [Radici, Jakob & Bianconi, PRD65].

modulations of spin asymmetries single out:

Scalar PDF from the beam spin asymmetry

$$A_{LU}^{\sin\phi_R}(x,z,m_{\pi\pi}) \propto \frac{M}{Q} \frac{\sum_q e_q^2 \left[x e^q(x) H_{1,sp}^{\triangleleft,q}(z,m_{\pi\pi}) + \frac{m_{\pi\pi}}{zM} f_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z,m_{\pi\pi}) \right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+pp}^q(z,m_{\pi\pi})}$$

$$[\underline{\text{twist-3 PDF} \times \text{twist-2 FF}} + [\underline{\text{twist-2 PDF} \times \text{twist-3 FF}}] \\ \text{unpolarized}$$

_Extraction of e(x)_____

Beam spin asymmetry at CLAS and CLAS12

dihadron SIDIS on proton target – sensitive to $e^P \equiv \frac{1}{\Omega} (4 e^{u_V} - e^{d_V});$

> [Bacchetta & Radici, PRD69 (2004)] [Courtoy, 1405.7659]

non-vanishing twist-3 effects at CLAS12;

- projections of beam spin asymmetries on $(x, z, M_h; Q^2, y)$
 - \Rightarrow (x, z, M_h) triptych from the parton distribution and fragmentation function.

Road map for e(x) extraction and (global) analysis.

see talk by Christopher Dilks

[CLAS Collaboration, PRL126 (2021) 6, 062002]

CLAS12: $1.5 < Q^2 < 5.7 \,\text{GeV}^2$

Extraction of e(x)

leading-twist DiFFs

Twist-2 Dihadron Fragmentation Functions

Phenomenologically tested for the twist-2 transversity PDF [Bacchetta, Courtoy & Radici, PRL107 and follow-ups] Sextracted in e+e- at Belle here: [Radici, Courtoy, Bacchetta, JHEP 05 (2015)] we get the ratio R that is believed to be universal (portable) up to evolution effects

$$R(z, M_h) = \frac{|\mathbf{R}|}{M_h} \frac{H_1^{\triangleleft u}(z, M_h; Q_0^2)}{D_1^u(z, M_h; Q_0^2)} \xrightarrow{\qquad \text{ chiral-odd DiFF}} \text{ unpolarized DiFF}$$

A. Courtoy-IFUNAM

Twist-2 Dihadron Fragmentation Functions

Phenomenologically tested for the twist-2 transversity PDF [Bacchetta, Courtoy & Radici, PRL107 and follow-ups] Sextracted in e+e- at Belle here: [Radici, Courtoy, Bacchetta, JHEP 05 (2015)] we get the ratio R that is believed to be universal (portable) up to evolution effects

$$R(z, M_h) = \frac{|\mathbf{R}|}{M_h} \frac{H_1^{\triangleleft u}(z, M_h; Q_0^2)}{D_1^u(z, M_h; Q_0^2)} \xrightarrow{\qquad \text{ chiral-odd DiFF}} \text{ unpolarized DiFF}$$

A. Courtoy-IFUNAM

Extraction of e(x)

Extraction of e

e(x) from CLAS data

$$A_{LL}^{\sin(\phi_n)} = \frac{A}{A_{LL}} = \frac{A}{A} = \frac{A}{$$

Twist-3 Dihadron Fragme

- Unknown phenomenologically;
- Solutions for genuine twist-3 DiFF: $\tilde{D}^{\triangleleft}$ [Luo et al., PRD100], $\tilde{G}^{\triangleleft}$ [Yang et al., PRD99]
- Setimate of Interference FF through the asymmetries on longitudinally-polarized target at COMPASS [Sirtl, PhD thesis, 2017]

$$\begin{split} A_{UL}^{\sin(\phi_R)} &= -\frac{M}{Q} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[x h_L^q(x) H_1^{\angle q, sp}(z, M_h^2) + \frac{M_h}{Mz} g_1^q(x) \tilde{G}^{\angle q, sp}(z, M_h^2) \right]}{\sum_q e_q^2 f_1^q(x) D_1^{q, ss + pp}(z, M_h^2)} \\ A_{LL}^{\cos(\phi_R)} &= -\frac{M}{Q} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[x e_L^q(x) H_1^{\angle q, sp}(z, M_h^2) - \frac{M_h}{Mz} g_1^q(x) \tilde{D}^{\angle q, sp}(z, M_h^2) \right]}{\sum_q e_q^2 f_1^q(x) D_1^{q, ss + pp}(z, M_h^2)}. \end{split}$$

$$A_{UL}^{\sin(\phi_R)} = 0.0050 \pm 0.0010(\text{stat}) \pm 0.0007(\text{sys})$$
$$A_{LL}^{\cos(\phi_R)} = -0.0135 \pm 0.0064(\text{stat}) \pm 0.0046(\text{sys})$$
$$\Rightarrow |A_{LL}^{\cos\phi_R}| > A_{UL}^{\sin\phi_R}$$

Our ansatz for the twist-3 DiFF contribution

- CLAS12: split invariant-mass regions M_h > or < 0.63 GeV to pinpoint vector meson contributions
 We assume the trend of all interference DiFFs in the invariant mass is similar for M_h > 0.63 GeV (up to overall sign)
 supported by model evaluation of $\tilde{D}^{\triangleleft}$ and $\tilde{G}^{\triangleleft}$
- Reproducing A^{cos \phi_R}_{LL} in that range sets our upper bound to \kappa \Rightarrow \kappa_{M_h}
 \kappa_{M_h} reproduces the order of magnitude for A^{sin \phi_R}_{UL} adequately

 \Rightarrow invariant-mass behavior is key, twist-2 DiFF alone not enough to interpret all M_h -projected twist-3 asymmetries.

A. Courtoy—IFUNAM_

Extraction of e(x)

___CPHI_2022

Point-by-point e(x) from CLAS data

Scenario I: Wandzura-Wilczek approximation

$$\frac{e^{V}(x)}{f_{1}^{\Sigma}(x)}\frac{\tilde{H}_{1}^{\triangleleft}}{D_{1}} \propto \frac{Q}{M} A_{LU}^{\sin\phi_{R}}$$

Scenario II: beyond WW approximation

$$\frac{e^V(x)}{f_1^{\Sigma}(x)}\frac{\tilde{H}_1^{\triangleleft}}{D_1} \propto \frac{Q}{M} A_{LU}^{\sin\phi_R} \pm \kappa \frac{f_1^V(x)}{f_1^{\Sigma}(x)}\frac{\tilde{H}_1^{\triangleleft}}{D_1}$$

Sign of twist-3 DiFFs undetermined

[Courtoy, 1405.7659] [Courtoy, Miramontes, Avakian, Mirazita, in progress]

Extraction of e(x)

Point-by-point e(x) from CLAS data

Scenario I: Wandzura-Wilczek approximation

$$\frac{e^{V}(x)}{f_{1}^{\Sigma}(x)}\frac{\tilde{H}_{1}^{\triangleleft}}{D_{1}} \propto \frac{Q}{M} A_{LU}^{\sin\phi_{R}}$$

Scenario II: beyond WW approximation

$$\frac{e^V(x)}{f_1^{\Sigma}(x)}\frac{\tilde{H}_1^{\triangleleft}}{D_1} \propto \frac{Q}{M} A_{LU}^{\sin\phi_R} \pm \kappa \frac{f_1^V(x)}{f_1^{\Sigma}(x)}\frac{\tilde{H}_1^{\triangleleft}}{D_1}$$

6 $e^{P}(\mathbf{x})$ 2 -2 0.2

10

8

Combining the uncertainty at 90% CL⇒

0.1

Evolution omitted thanks to low-Q² values -Q=1GeV

Uncertainty on unpolarized PDF taken into account

Sign of twist-3 DiFFs undetermined

[Courtoy, 1405.7659] [Courtoy, Miramontes, Avakian, Mirazita, in progress]

What is the probability for $e^{P}(x)$ to be non-zero?

Probability that the proton combination is <u>greater</u> than zero — not exactly "how incompatible with zero is it?" — is a useful information from the point-by-point extraction of a collinear twist-3 PDF with a minimum set of approximations.

Mostly far from zero!

Universality of non-perturbative functions

Dihadron fragmentation functions

- ➡ DiFF extracted in e⁺e⁻, to be tested against SIDIS multiplicities
- Consistency check on SIDIS (z, M_h) dependence at CLAS & CLAS12
- Determination of the integral of $e^{P}(x)$ from reconstruction: n_{x}

- Twist-2 and -3 PDFs
 - → Universality of transversity in pp and SIDIS [Radici et al, PRD94]
 - Global analysis of the transversity possible [Radici & Bacchetta, PRL120; JAM Coll., PRD102] see talk by Alexei Prokudin
 - ➡ Are twist-3 PDFs universal?

Yet to be answered.

Examples through TMD and dynamical twist-3 relations (e.g. Sivers and Qiu-Sterman) — see talk by Shohini Bhattacharya

Data

Extraction of e(x)

Consequences of the extraction

- 1. Are twist-3 PDFs non-zero? Yes, to a certain CL.
- 2. Can we access qgq correlations and more non-perturbative information? Let's take the example of e(x).

Consequences of the extraction

- 1. Are twist-3 PDFs non-zero? Yes, to a certain CL.
- 2. Can we access qgq correlations and more non-perturbative information? Let's take the example of e(x).

Schematic models for illustration purpose only!

Moments will matter.

A. Courtoy-IFUNAM_

Consequences of the extraction

- 1. Are twist-3 PDFs non-zero? Yes, to a certain CL.
- 2. Can we access qgq correlations and more non-perturbative information? Let's take the example of e(x).

Schematic models for illustration purpose only!

Moments will matter.

A. Courtoy-IFUNAM_

Other nonperturbative effects at not so small x

Can we study qgq correlation at the EIC?

Future: EIC will cover low- to mid-Q² and smallish x values

- Yellow Report: access to multiparton correlations.
- Proposal for a 2nd interaction region IR2@EIC.
- Complementarity with present data.

Projections for IR2@EIC White Paper by A. Vossen

Expectations for the EIC

- EIC error projections (from transversity studies)
- Proton target shown, but need for neutron
- Models × DiFFs predictions
 - → LC model [Pasquini & Rodini, PLB 788]
 - made-up mass-term contribution with mq=300MeV
- Non-negligible for lowest beam configurations

Archetype of observables for IR2@EIC

- Evolution equations for genuine qgq twist-3 known in most cases;
- Understanding of the various contributions to twist-3 PDFs;
- Especially "hot" for TMD studies.
- Require a second interaction region @EIC.

EIC Yellow Report [2103.05419]

х

Multi-parton distributions at the EIC

Golden channel

fully inclusive DIS, access to g_T

Collinear observables. 0

- Plethora of interesting TMD, GPD higher-twist observables to be considered too 0
- subWG: Avakian, Burkardt, AC, Gamberg, Pitonyak, Sato, Schweitzer, Vossen

Large range of Q² values, includes smallish x regions

Complementary to fixed-target experiments (HERMES, CLAS,...)

Silver channel

semi-inclusive DIS, access to e(x)

A. Courtoy—IFUNAM______Higher twists at the EIC_____

Seminar SMU

Unpolarized PDFs at in the large x & low Q² regime

Denominator of asymmetries rely on first term in the expansion of their unpolarized structure function

Unpolarized PDFs:

(large x, low Q²) is either in the extrapolation region for high-energy global analyses -CT, MSHT, NNPDF or requires non-perturbative corrections related to the resonance region, e.g. TMC, HT -CJ, JAM.

Change in degrees of freedom.

Increased complexity on which most SIDIS-based extractions at low Q² will rely.

"We can tackle higher twist parts"—see talk by Andrea Signori Can we tackle the denominator?

Comparison of CTEQ-TEA (CT) and CTEQ-JLab (CJ) analyses [Accardi et al, EPJC81]

A. Courtoy—IFUNAM_

 $\frac{\text{twist-3 PDF} \times \text{twist-2 FF}}{\text{unpolarized}}$

Towards a (global) analysis of the scalar PDF

<u>Classes of first principle constraints for x-dependence of twist-3 PDFs</u>

- support in $x \in [0,1]$
- end-point: f(x = 1) = 0
- sum rules as output: $\langle x \rangle_n = \int_0^1 dx \, x^{n-1} f(x)$ some moments evaluated on the lattice.
- no QCD evolution for now -DGLAP eqs known for twist-3 starting from n>2.

Towards a (global) analysis of the scalar PDF

<u>Classes of first principle constraints for x-dependence of twist-3 PDFs</u>

- support in $x \in [0,1]$
- end-point: f(x = 1) = 0
- sum rules as output: $\langle x \rangle_n = \int_0^1 dx \, x^{n-1} f(x)$ some moments evaluated on the lattice.
- no QCD evolution for now -DGLAP eqs known for twist-3 starting from n>2.

Huge family of functions that might describe the data.

The role of parametrization is important — neural-network approaches treat the problem differently.

[Kovarik et al, Rev.Mod.Phys. 92 (2020)]

Consequently, the PDF uncertainty is comprised of four categories of contributions:

- 1. Experimental uncertainties, including statistical and correlated and uncorrelated systematic uncertainties of each experimental data set;
- 2. Theoretical uncertainties, including the absent higher-order and power-suppressed radiative contributions, as well as uncertainties in using parton showering programs to correct the data in order to compare to fixed-order perturbative cross sections;
- 3. Parameterization uncertainties associated with the choice of the PDF functional form;
- 4. Methodological uncertainties, such as those associated with the selection of experimental data sets, fitting procedures, and goodness-of-fit criteria.

Towards a (global) analysis of the scalar PDF

Classes of *first principle* constraints for *x*-dependence of twist-3 PDFs

- support in $x \in [0,1]$
- end-point: f(x = 1) = 0
- sum rules as output: $\langle x \rangle_n = \int_0^1 dx \, x^{n-1} f(x)$ some moments evaluated on the lattice.
- no QCD evolution for now -DGLAP eqs known for twist-3 starting from n>2.

Huge family of functions that might describe the data.

The role of parametrization is important — neural-network approaches treat the problem differently.

Systematize the study of the parametrization for a faithfull analysis.

⇒ Fantômas4QCD

[Kovarik et al, Rev.Mod.Phys. 92 (2020)]

Consequently, the PDF uncertainty is comprised of four categories of contributions:

- 1. Experimental uncertainties, including statistical and correlated and uncorrelated systematic uncertainties of each experimental data set;
- 2. Theoretical uncertainties, including the absent higher-order and power-suppressed radiative contributions, as well as uncertainties in using parton showering programs to correct the data in order to compare to fixed-order perturbative cross sections;
- 3. Parameterization uncertainties associated with the choice of the PDF functional form;
- 4. Methodological uncertainties, such as those associated with the selection of experimental data sets, fitting procedures, and goodness-of-fit criteria.

Extraction of e(x)

Fantômas4QCD

Uncertainty on the PDFs coming from the choice of functional form shown for the unpolarized PDFs of CT18.

Fantômas will propose an unbiased version of the analytic parametrizations for a variety of nonperturbative QCD functions.

[Courtoy, Nadolsky & students, in progress]

A. Courtoy-IFUNAM_

[Hou et al, Phys.Rev.D 103 (2021)]

Fantômas team

Ryan Guess (SMU) Lucas Kotz (SMU) Maximiliano Ponce Chávez (UNAM) Varada Purohit (SMU)

> Pavel Nadolsky (SMU) AC (UNAM)

Conclusions

We have discussed the role of higher-twist distributions in the understanding of hadron structure. We have presented a truly updated extraction of the scalar PDF, e(x). It is non-zero to more than 75% probability.

From the EIC wish list, higher twists contribute to, e.g.

- Precision 3D imaging of nucleons.
- Emergence of hadronic mass from the scalar PDF.
- Proton spin puzzle from GPDs.

Higher-twist distributions will unveil aspects of hadron dynamics.

Higher-twist distributions are accessible but require more statistics, phenomenological and theoretical developments.

Combine efforts with the lattice QCD? [e.g. Bhattacharya et al, PRD102; Braun & Vladimirov, JHEP10(2021)087]

A. Courtoy—IFUNAM_

