

The L + C project: status and perspectives

In collaboration with V.Carassiti, G.Ciullo, P.Lenisa, L.Pappalardo, M.Santimaria, E.Steffens

The LHCspin project aims to bring spin physics at the LHC through the implementation of a new-generation compact polarized gaseous fixed target in the LHCb spectrometer

Fixed-target kinematics:

pp/pA collisions up to 7 TeV beam $-3.0 \le y_{CMS} \le 0 \rightarrow 2 \le y_{lab} \le 5$ AA collisions: 2.76 TeV beam $\sqrt{s_{NN}} \simeq 72 \ GeV$ $y_{CMS} = 0 \rightarrow y_{lab} = 4.3$

Boost effect $\gamma = \frac{\sqrt{s}}{2m_p} \sim 60 \longrightarrow \text{access to large } x^{target} \text{ physics (x_F<0)}$ $y_{CMS} = 0 \rightarrow \theta \sim 1^{\circ}$ $y_{CMS} = -3$

2

The LHCspin project aims to bring spin physics at the LHC through the implementation of a new-generation compact polarized gaseous fixed target in the LHCb spectrometer

Fixed-target kinematics:

pp/pA collisions up to 7 TeV beam $\sqrt{s} = \sqrt{2m_N E_p} = 115 \text{ GeV}$ $-3.0 \le y_{CMS} \le 0 \rightarrow 2 \le y_{lab} \le 5$ AA collisions: 2.76 TeV beam $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$ $y_{CMS} = 0 \rightarrow y_{lab} = 4.3$

Boost effect $\gamma = \frac{\sqrt{s}}{2m_p} \sim 60$ \longrightarrow access to large x_2^{target} physics (x_F<0) $y_{CMS} = 0 \rightarrow \theta \sim 1^{\circ}$ $y_{CMS} = -3$

The physics goals of LHCspin

- Multi-dimensional nucleon structure in a poorly explored kinematic domain
- Measure experimental observables sensitive to both quarks and gluons TMDs, and GPDs
- Make us of new probes (charmed and beauty mesons)
- Complement present and future SIDIS results
- Test non-trivial process dependence of quarks and (especially) gluons TMDs
- Extend our understanding of the strong force in the non-perturbative regime

Quark TMDs

Sensitive to quark TMDs through TSSAs

(ϕ : azimuthal orientation of lepton pair in dilepton CM)

LHCb has excellent μ -ID & **dominant:** $\bar{q}(x_{be})$ reconstruction for $\mu^+\mu^-$ suppressed: q(x)

- Extraction of qTMDs does not require knowledge of FF
- Verify sign change of Sivers function wrt SIDIS $f_{1T}^{\perp}|_{DY} = -f_{1T}^{\perp}|_{SIDIS}$
- Test flavour sensitivity using both H and D targes

$$\frac{\otimes h_1^q}{\otimes f_1^q}$$
 , ...

dominant: $\bar{q}(x_{beam}) + q(x_{target}) \rightarrow \mu^{+}\mu^{-}$ suppressed: $q(x_{beam}) + \bar{q}(x_{target}) \rightarrow \mu^{+}\mu^{-}$

> edge of FF S $f_{1T}^{\perp}|_{DY} = -f_{1T}^{\perp}|_{SIDIS}$ rgets

Gluon TMDs

Theory framework well consolidated, but experimental access still extremely limited

The most efficient way to access the gluon dynamics inside the proton at LHC is to measure heavy-quark observables. At LHC heavy quarks are produced by the dominant gg fusion process

Inclusive quarkonia production in (un)polarized pp interaction turns out to be an ideal observable to access gTMDs

TMD factorisation requires $q_T(Q) \ll M_Q$:

- Can look at associate quarkonia production, where only relative q_T needs to be small (e.g. $pp^{(\uparrow)} \rightarrow J/\Psi + J/\Psi + X$)
- Due to the large masses, easier in case of bottomonium where factorisation can hold at large q_T

Gluon TMDs

Theory framework well consolidated, but experimental access still extremely limited

The most efficient way to access the gluon dynamics inside the proton at LHC is to measure heavy-quark observables. At LHC heavy auarks are produced by the dominant aa fusion

	_			
		U	Circularly	Line
nucleon pol.	U	f_1^g		h_1
	L		g_{1L}^g	h_1^-
	Т	$f_{1T}^{\perp g}$	g_{1T}^g	h_1^g ,

factorisation can hold at large q_T

Probing the Sivers function

Can be accessed through the Fourier decomposition of the TSSAs for inclusive meson production

$$A_N = \frac{1}{P} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \propto \left[f_{1T}^{\perp g}(x_a, k_{\perp}) \right]$$

Sensitive to color exchange among IS and FS, and gluon OAM Shed light on spin-orbit correlation of unpolarized gluons inside a transversely polarized proton

 $(a) \otimes f_g(x_b, k_{\perp b}) \otimes d\sigma_{gg \to QQg}] \sin \phi_S + \cdots$

Predictions for J/Ψ production based on GPM & CGI-GPM Expected amplitudes could reach 5-10% in the $x_F < 0$ region

Examples of expected performances

reconstructed particles

A new opportunity: spin physics in heavy-ion collisions

 Φ_p polarisation angle

Deep insight into the <u>dynamics of small systems</u>. Spin adds a privileged direction to the <u>collectivity</u> phenomena studies

The collective evolution produces elliptic flow which can be quantified with respect to the (fixed) polarization axis

Ellepticity wrt the polarisation angle

Phys. Rev. Lett. 121 (2018) 202301

International framework and feedback

very low energy, no rare probes, no ion beam, ...

LHCspin is con

$f_{1T}^{\perp g [+,}$
$f_{1T}^{\perp g [+,}$

 $f_{1T}^{\perp g[+,+]}$

 $f_{1T}^{\perp g[+,-]}$

f_{1T}^{-1}
$f_{1m}^{\perp g}$
JIT

"Ambitious and long term LHC-Fixed Target research program. The efforts of the existing LHC experiments to implement such a programme, including specific R&D actions on the collider, deserve support" (European Strategy for Particle Physics)

"This would be unique and highly complementary to existing and future measurements in lepton-proton collisions, because the asymmetries in question have a process dependence between pp and lp that is predicted by theory" (CERN Physics Beyond Collider)

linearly polarized gluon TMD

	$pp \to \gamma \gamma X$	$pA \to \gamma^* \text{ jet } X$	$e p \to e' Q \overline{Q} X$ $e p \to e' j_1 j_2 X$	$pp \to \eta_{c,b} X$ $pp \to H X$	$\begin{array}{c} pp \rightarrow J/\psi \gamma X \\ pp \rightarrow \Upsilon \gamma X \end{array}$
$h_1^{\perp g [+,+]} (WW)$	\checkmark	×	\checkmark	\checkmark	\checkmark
$h_1^{\perp g [+,-]} (\mathrm{DP})$	×	\checkmark	×	×	×

Several experiments dedicated to spin physics, but with many limitations:

LHCspin is unique in this respect

								DY	SII	DIS	$pA \rightarrow$	$\gamma \operatorname{jet} X$	$e p \to e' Q \overline{Q}$
npie		enn	ary io										$e p \rightarrow e' j_1 j_2$
					$f_1^{g[+,+]}$ (WW)		×	×	×		×		\checkmark
TM	Ds (S	ivers)		[D. Bc	$f_1^{g[+,-]}$ (DP)		\checkmark	\checkmark	\checkmark		\checkmark		×
	DY	SIDIS	$p^{\uparrow}A \to hX$	$p^{\uparrow}A$	$^{\uparrow}A \rightarrow \gamma^{(*)} \text{ jet } X p^{\uparrow}p \rightarrow 0$			$\gamma X \qquad e p^{\uparrow}$		$\rightarrow e'$	$Q\overline{Q}X$		1
					$p^{\uparrow}p$ –			X	$e p^{\uparrow} \rightarrow$		i1 <i>i</i> 2 X		
							pp	$p \to \gamma \gamma X$		pA	$pA \to \gamma^* \operatorname{jet} X$		$e p \to e' Q \overline{Q} X$
+] (WW)	×	×	×										$e p \to e' j_1 j_2 X$
^{-]} (DP)	\checkmark	\checkmark	\checkmark		$h_1^{\perp g [+,+]}$	(WW)				×		
(Weizsacker-Williams type or " f-type ") \rightarrow anti:					$h_1^{\perp g [+,-]}$	$\frac{1}{1} \frac{1}{g[+,-]} (DP)$		×		\checkmark			×
1							·						
¹ (Dipole s	type c	or " d-type	") \rightarrow symmetric	coloui	r structures								
						in he	me	asur	ad (at th	ne Fl	ectror	n Ion-Collid

sured at the Electron Ion-Collider (EIC)

	DY	SIDIS	$p^{\uparrow}A \to hX$	$p^{\uparrow}A \to \gamma^{(*)} \operatorname{jet} X$			$e p^{\uparrow} \rightarrow e' Q \overline{Q} X$	asured at LHCspin	
					$p^{\uparrow}p ightarrow J/$	$\gamma X / \psi J/\psi X$	$e p^{\scriptscriptstyle +} \rightarrow e^{\prime} j_1 j_2 X$		
$\left[+,+\right] (WW)$	×	×	×	×	١	/	\checkmark		
$^{[+,-]}(DP)$	\checkmark	\checkmark	\checkmark	\checkmark	>	<	×		

The hardware system

Successful technology based on HERA and COSY experiments

Challenge: develop a <u>new</u> generation of polarized targets

The hardware system

Successful technology based on HERA and COSY experiments

Challenge: develop a <u>new</u> <u>generation</u> of polarized targets

p-gas

- High density, high polarization, no dilution, high frequency spin inversion, polarized H and D
- New coating materials: low Secondary Electron Yield (SEY) and suppress atomic recombination
- Compact Atomic Beam Source and Breit-Rabi Polarimeter
- Openable storage cell

Compatibility with LHC (aperture, impedance, cooling, induced depolarization, vacuum, ...)

Polarized target

pp

The hardware system

Successful technology based on HERA and COSY experiments

Challenge: develop a <u>new</u> generation of polarized targets

LHC beam life time 1/e reduction in 3300 h (wrt 10 h typical LHC beam)

The gas target has <u>no</u> impact to the other LHC experiments

SMOG2 the first gas target with storage cell at LHC/LHCb

Besides the unique scientific production, the SMOG2 system, during the LHC Run 3 (from 2022), will deliver the first data usable for studying the mutual target-beam interactions providing a fundamental playground for the R&D of LHCspin

15

It is the only object in the LHC primary vacuum

Simultaneous run for p-gas @ 115 GeV and pp @ 14 TeV

The two systems don't interfere each other and the reconstruction efficiencies stay unchanged The DAQ data flow increases of 1-3% only

LHCspin represents the only way to have polarised collisions at the LHC

LHCspin represents the only way to have polarised collisions at the LHC

Conclusions

- LHCspin is an innovative project conceived to bring polarized physics at the most powerful \bigcirc of the most advanced fully instrumented forward spectrometer (LHCb)
- 0 LHCspin R&D
- LHCspin is extremely ambitious in terms of both physics reach and technical complexity

Pasquale Di Nezza

collider (LHC) exploiting the unique kinematic conditions provided by a TeV-scale beam, with one

The installation of the first storage cell target for unpolarized gases (SMOG2) already happened in August 2020. It will start taking data from LHC Run3 (2022) and is a fantastic playground for the

Conclusions

- LHCspin is an innovative project conceived to bring polarized physics at the most powerful \bigcirc of the most advanced fully instrumented forward spectrometer (LHCb)
- \bigcirc LHCspin R&D
- LHCspin is extremely ambitious in terms of both physics reach and technical complexity

LHCspin represents a unique possibility ... in a realistic time schedule and costs

Pasquale Di Nezza

collider (LHC) exploiting the unique kinematic conditions provided by a TeV-scale beam, with one

The installation of the first storage cell target for unpolarized gases (SMOG2) already happened in August 2020. It will start taking data from LHC Run3 (2022) and is a fantastic playground for the

