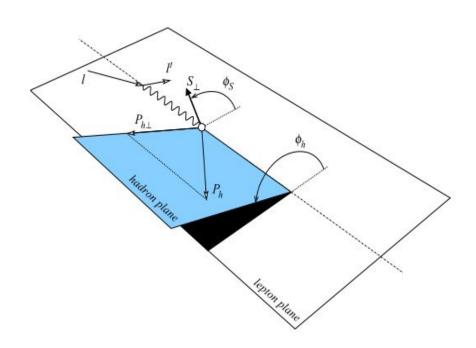
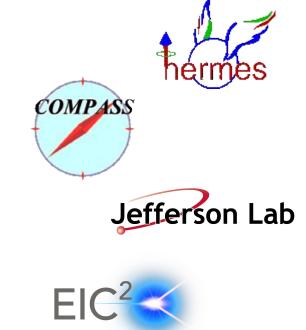
Factorization approach for QED+QCD in semi-inclusive DIS

Nobuo Sato

In collaboration with : Tianbo Liu (Shandong U.), Wally Melnitchouk (JLab), Jianwei Qiu (JLab)

SIDIS - the current frontier of hadron structure studies





$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2\left(1-\varepsilon\right)} \left(1+\frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h F_{UU}^{\cos\phi,h} \right. \\ &+ \varepsilon \cos(2\phi_h) F_{UU}^{\cos\,2\phi_h} + \lambda_e \sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h F_{LU}^{\sin\phi,h} \\ &+ S_{\parallel} \left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_h F_{UL}^{\sin\phi,h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin\,2\phi_h} \right] \\ &+ S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_h F_{LL}^{\cos\phi,h} \right] \\ &+ |S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h} + \phi_S) + \varepsilon \sin(3\phi_h - \phi_S) \right) \\ &+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h} + \phi_S) + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h} - \phi_S) \\ &+ \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h} - \phi_S) \\ &+ \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos(2\phi_h - \phi_S) F_{LT}^{\cos(\phi_h} - \phi_S) + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_S F_{LT}^{\cos\phi_S} \\ &+ \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h} - \phi_S) \\ &+ \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h} - \phi_$$

Physics goals

Name	Symbol	meaning
upol. PDF	f_1^q	U. pol. quarks in U. pol. nucleon
pol. PDF	g_1^q	L. pol. quarks in L. pol. nucleon
Transversity	h_1^q	T. pol. quarks in T. pol. nucleon
Sivers	$f_{1T}^{\perp(1)q}$	U. pol. quarks in T. pol. nucleon
Boer-Mulders	$h_1^{\perp(1)q}$	T. pol. quarks in U. pol. nucleon
Boer-Mulders	$h_1^{\perp(1)q}$	T. pol. quarks in U. pol. nucleon
:		
FF	D_1^q	U. pol. quarks to U. pol. hadron
Collins	$H_1^{\perp(1)q}$	T. pol. quarks to U. pol. hadron
:	:	÷

But.. can we access to all structure functions from experiments uniquely?

The trick $d\phi_h d\phi_S \sin(\phi_h - \phi_S) \sin(\phi_h + \phi_S) = 0$ $\int \mathrm{d}\phi_h \,\mathrm{d}\phi_S \sin(\phi_h - \phi_S) \frac{\mathrm{d}^o \sigma_{\ell P(S_T) \to \ell' P_h X}}{\mathrm{d}x_B \mathrm{d}y \,\mathrm{d}\psi \,\mathrm{d}z_h \,\mathrm{d}\phi_h \mathrm{d}P_{h_T}^2},$ $F_{UT,T}^{\sin(\phi_h - \phi_S)} = \int \mathrm{d}\phi_h \,\mathrm{d}\phi_S \,\sin(\phi_h - \phi_S) \sin(\phi_h - \phi_S) F_{UT,T}^{\sin(\phi_h - \phi_S)}$ + $\sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)}$.

Kinematics

$$x_B = \frac{Q^2}{2P \cdot q}, \quad y = \frac{P \cdot q}{P \cdot l}, \quad z = \frac{P \cdot P_h}{P \cdot q}, \quad \gamma = \frac{2Mx_B}{Q}$$

$$\cos(\phi_h) = -\frac{l_\mu P_{h\nu} g_\perp^{\mu\nu}}{\sqrt{l_\perp^2 P_{h\perp}^2}}, \quad \cos(\phi_S) = -\frac{l_\mu S_\nu g_\perp^{\mu\nu}}{\sqrt{l_\perp^2 S_\perp^2}},$$
$$\sin(\phi_h) = -\frac{l_\mu P_{h\nu} \epsilon_\perp^{\mu\nu}}{\sqrt{l_\perp^2 P_{h\perp}^2}}, \quad \sin(\phi_S) = -\frac{l_\mu S_\nu \epsilon_\perp^{\mu\nu}}{\sqrt{l_\perp^2 S_\perp^2}},$$

$$l^{\mu}_{\perp} = g^{\mu\nu}_{\perp} l_{\nu}, \quad P^{\mu}_{h\perp} = g^{\mu\nu}_{\perp} P_{h\nu}$$

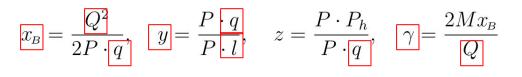
$$\varepsilon = \frac{1 - y - \frac{1}{4}\gamma^2 y^2}{1 - y + \frac{1}{2}y^2 + \frac{1}{4}\gamma^2 y^2}$$

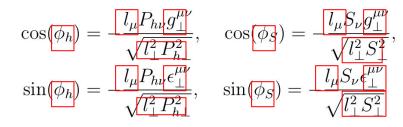
$$S^{\mu} = S_{\parallel} \frac{P^{\mu} - q^{\mu} M^2 / (P \cdot q)}{M \sqrt{1 + \gamma^2}} + S_{\perp}^{\mu}$$

$$S_{\parallel} = \frac{S \cdot q}{P \cdot q} \frac{M}{\sqrt{1 + \gamma^2}}, \quad S_{\perp}^{\mu} = g_{\perp}^{\mu\nu} S_{\nu}$$

$$g_{\perp}^{\mu\nu} = g_{\mu\nu} - \frac{q^{\mu}P^{\nu} + q^{\nu}P^{\mu}}{P \cdot q(1+\gamma^2)} + \frac{\gamma^2}{1+\gamma^2} \left(\frac{q^{\mu}q^{\nu}}{Q^2} - \frac{P^{\mu}P^{\nu}}{M^2}\right) \quad \epsilon_{\perp}^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma} \frac{P_{\rho}q_{\sigma}}{P \cdot q\sqrt{1+\gamma^2}}$$

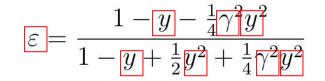
= depends on leptons momenta

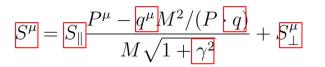


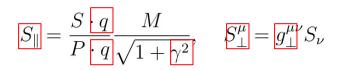


$$l_{\perp}^{\mu} = g_{\perp}^{\mu\nu} l_{\nu}, \quad P_{h\perp}^{\mu} = g_{\perp}^{\mu\nu} P_{h\nu}$$

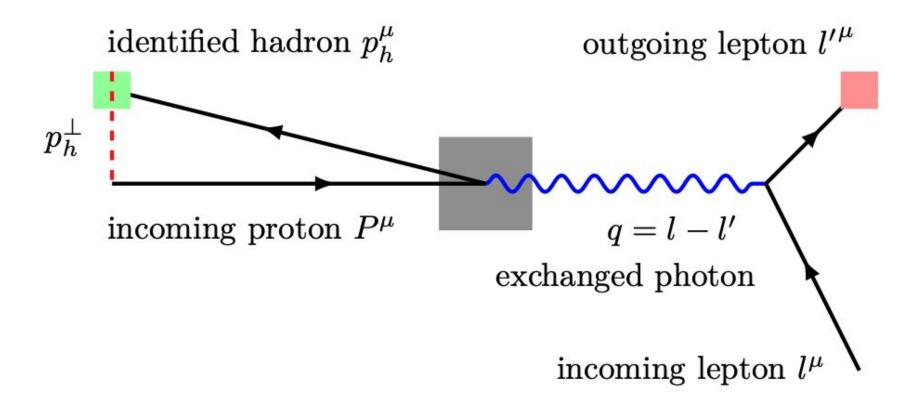
$$g_{\perp}^{\mu\nu} = g_{\mu\nu} - \frac{q^{\mu}P^{\nu} + q^{\nu}P^{\mu}}{P \cdot q(1 + \gamma^2)} + \frac{\gamma^2}{1 + \gamma^2} \left(\frac{q^{\mu}q^{\nu}}{Q^2} - \frac{P^{\mu}P^{\nu}}{M^2}\right) \quad \epsilon_{\perp}^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma} \frac{P_{\rho}q_{\sigma}}{P \cdot q\sqrt{1 + \gamma^2}}$$





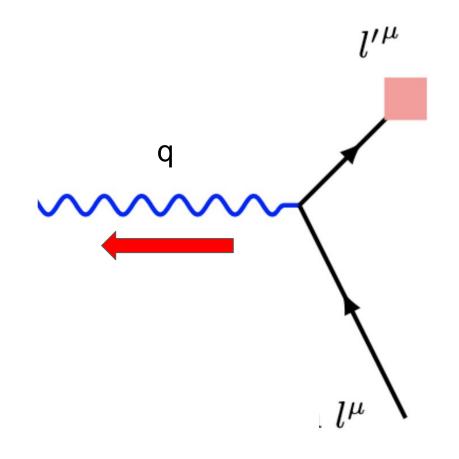


The Breit Frame

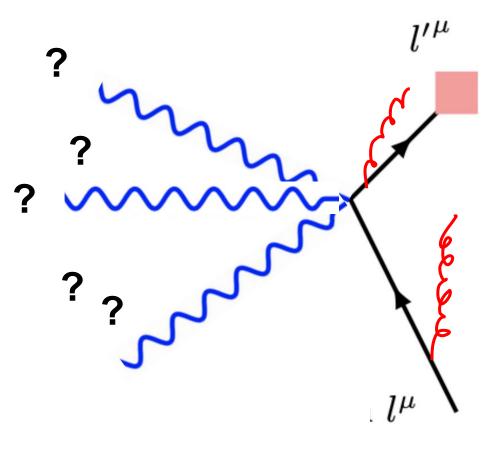


But

- Factorization theorem relies on q moving along -z
- How do we know that q is exactly along -z even-by-event?
- Role of QED radiation?



- In the presence of QED radiation, the q direction is not fixed
- The experimental Breit Frame does not need to coincide with the actual Breit-frame needed in QCD factorization



arXiv.org > hep-ph > arXiv:2008.02895

High Energy Physics – Phenomenology

[Submitted on 6 Aug 2020 (v1), last revised 17 Mar 2021 (this version, v3)]

Factorized approach to radiative corrections for inelastic lepton-hadron collisions

Tianbo Liu, W. Melnitchouk, Jian-Wei Qiu, N. Sato

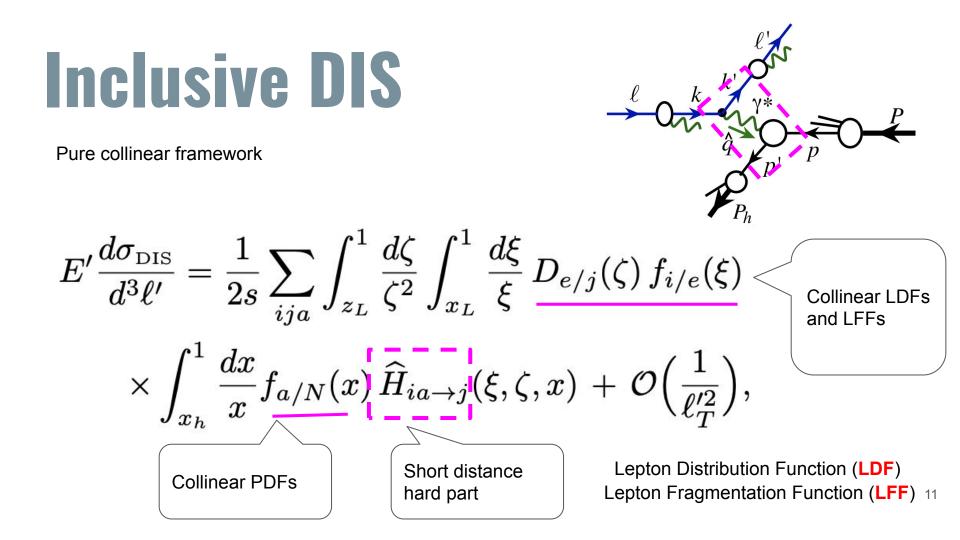
arXiv.org > hep-ph > arXiv:2108.13371

High Energy Physics – Phenomenology

[Submitted on 30 Aug 2021]

A new approach to semi-inclusive deep-inelastic scattering with QED and QCD factorization

Tianbo Liu, W. Melnitchouk, Jian-Wei Qiu, N. Sato



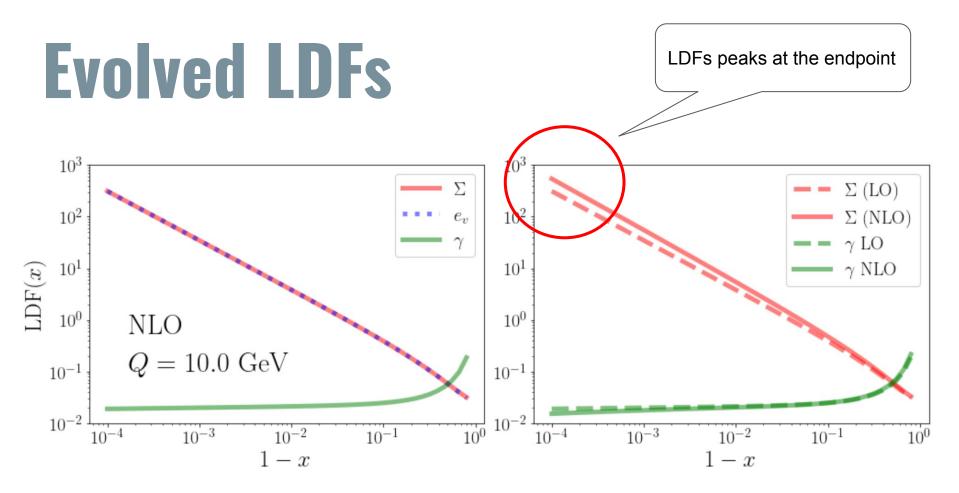
Collinear LDFs and LFFs

$$f_{i/e}(\xi) = \int \frac{dz^{-}}{4\pi} e^{i\xi\ell^{+}z^{-}} \langle e | \,\overline{\psi}_{i}(0)\gamma^{+}\Phi_{[0,z^{-}]} \,\psi_{i}(z^{-}) | e \rangle$$

$$D_{e/j}(\zeta) = \frac{\zeta}{2} \sum_{X} \int \frac{dz^-}{4\pi} e^{i\ell'^+ z^-/\zeta} \operatorname{Tr}\left[\gamma^+ \langle 0 | \overline{\psi}_j(0) \Phi_{[0,\infty]} | e, X \rangle \langle e, X | \psi_j(z^-) \Phi_{[z^-,\infty]} | 0 \rangle\right].$$

perturbatively calculable if we neglect hadronic components

$$\begin{array}{c|c}
\mu^{2} \\
\mu^{2} \\
\mu^{2} \\
\mu^{0} \\
\mu^{2} \\
\mu^{0} \\
\mu^{2} \\
\mu^{2$$



Endpoint issues

$$E'\frac{d\sigma_{\text{DIS}}}{d^3\ell'} = \frac{1}{2s} \sum_{ija} \int_{z_L}^{1} \frac{d\zeta}{\zeta^2} \int_{x_L}^{1} \frac{d\xi}{\xi} D_{e/j}(\zeta) f_{i/e}(\xi)$$

$$\times \int_{x_h}^{1} \frac{dx}{x} f_{a/N}(x) \widehat{H}_{ia \to j}(\xi, \zeta, x) + \mathcal{O}\Big(\frac{1}{\ell_T^2}\Big),$$

Subtraction trick

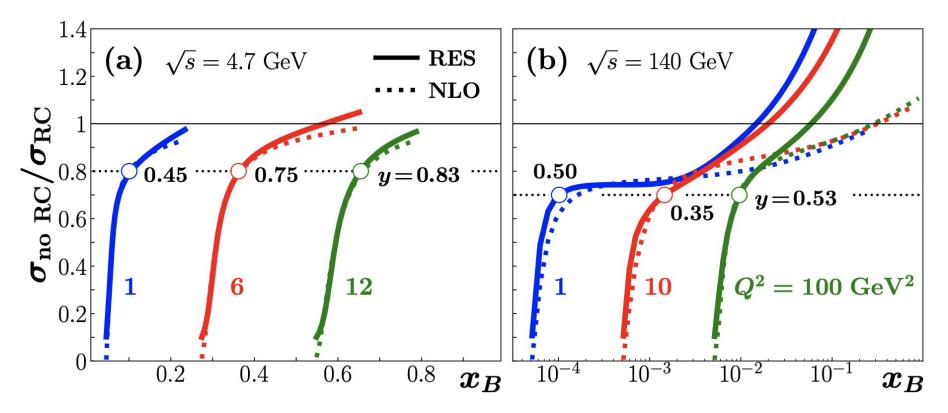
$$\sigma = \int_{\zeta_{\min}}^{1} d\zeta \int_{\xi_{\min}(\zeta)}^{1} d\xi f(\xi) D(\zeta) H(\xi,\zeta) \qquad D_{N} = \int_{0}^{1} d\zeta \zeta^{N-1} D(\zeta)$$

$$\sigma = \int_{\zeta_{\min}}^{1} d\zeta \ d(\zeta) [g(\zeta) - g(1)] + g(1) \frac{\zeta_{\min}}{2\pi i} \int dN \zeta_{\min}^{-N} \frac{D_{N}}{N-1} \qquad F_{N} = \int_{0}^{1} d\xi \xi^{N-1} f(\xi)$$

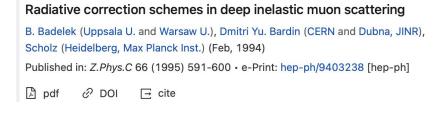
$$g(\zeta) = \int_{\xi_{\min}(\zeta)}^{1} d\xi \ f(\xi) [H(\xi,\zeta) - H(1,\zeta)] + H(1,\zeta) \frac{\xi_{\min}(\zeta)}{2\pi i} \int dN \xi_{\min}(\zeta)^{-N} \frac{F_{N}}{N-1}$$

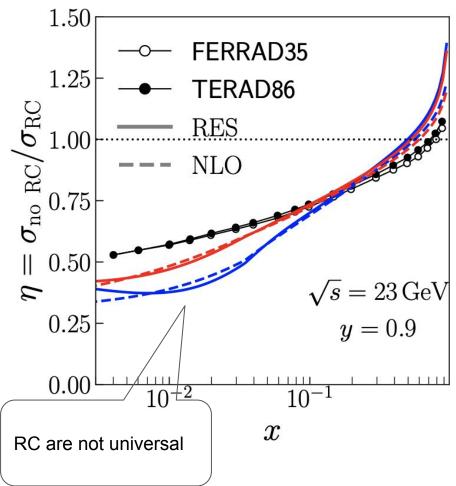
We remove the numerically problematic region and compute the difference accurately in Mellin space

Pheno

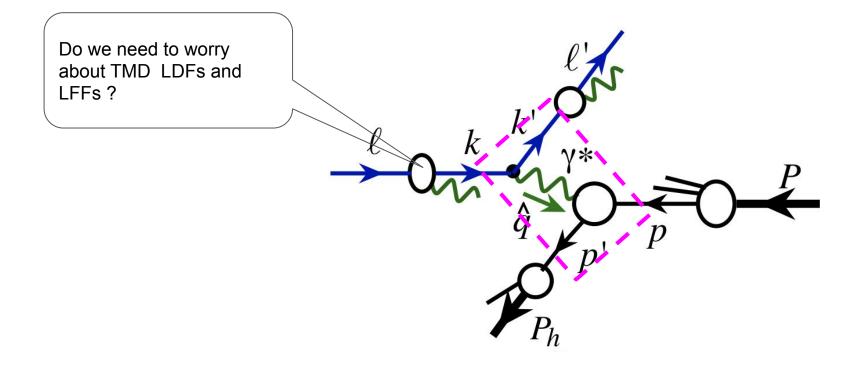


Comparison With existing literature...



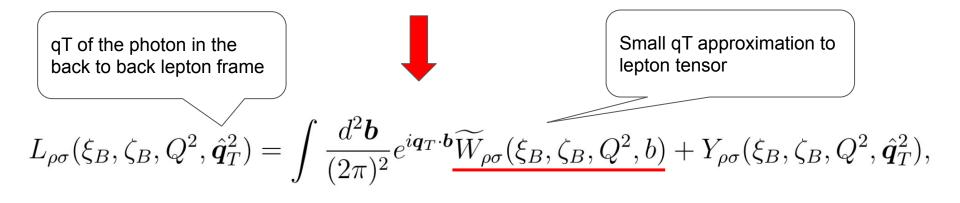


Semi-Inclusive DIS



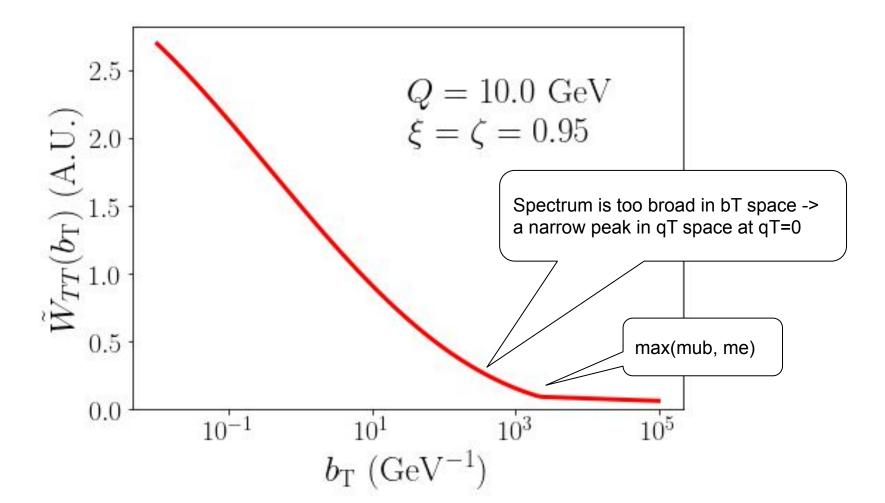
TMDs in leptonic tensor

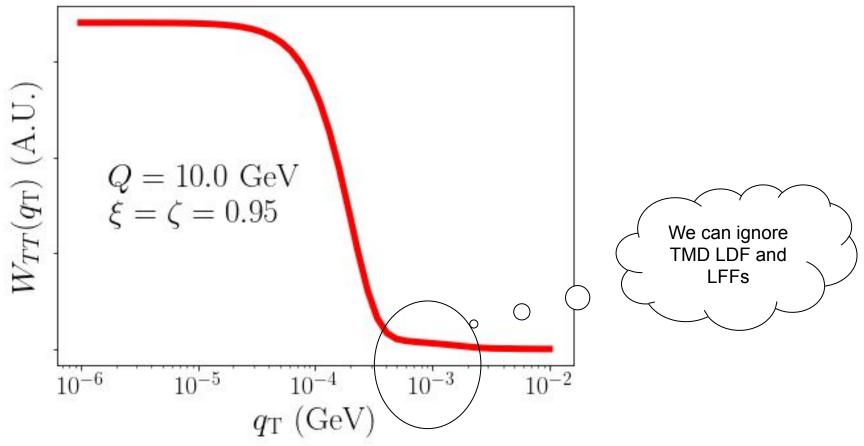
$$L^{(0)}_{\mu\nu}(\ell,\ell',\lambda_{\ell}) = \operatorname{Tr}\left[\gamma_{\nu}\frac{1}{2}\left(1+\lambda_{\ell}\gamma_{5}\right)\gamma\cdot\ell\gamma_{\mu}\gamma\cdot\ell'\right]$$
$$= 2\left(\ell_{\mu}\,\ell'_{\nu}+\ell_{\nu}\,\ell'_{\mu}-\ell\cdot\ell'g_{\mu\nu}+i\lambda_{\ell}\,\epsilon_{\mu\nu\alpha\beta}\,\ell^{\alpha}\,\ell'^{\beta}\right),$$



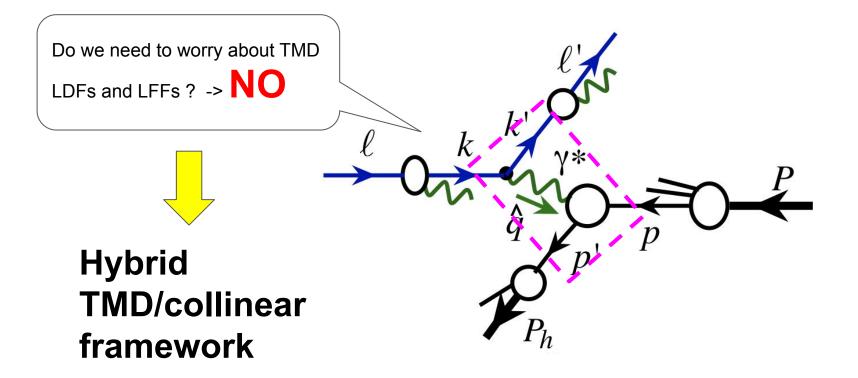
TMDs in lepton tensor

$$\widetilde{W}_{TT}(\xi_B, \zeta_B, Q^2, b) = 2 \int_{\xi_B}^1 \frac{d\xi}{\xi} \int_{\zeta_B}^1 \frac{d\zeta}{\zeta^2} \underline{f(\xi)} \overline{D(\zeta)} C_f(\lambda) C_D(\eta) \\ \times \exp\left\{-\int_{\mu_b^2}^{\mu_Q^2} \frac{d\mu'^2}{\mu'^2} \left[A(\alpha(\mu')) \ln \frac{\mu_Q^2}{\mu'^2} + B(\alpha(\mu'))\right]\right\}$$
The QED Sudakov varies very slowly





Semi-Inclusive DIS

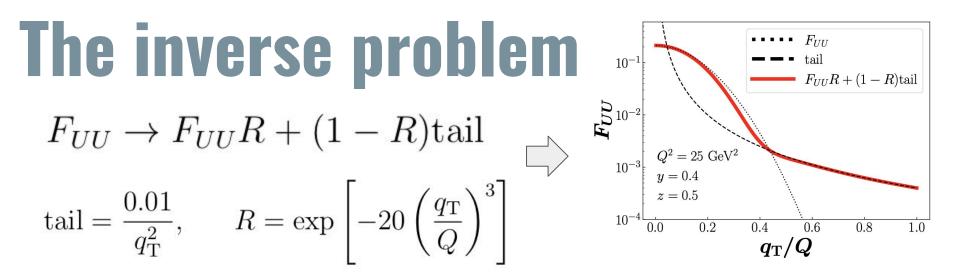


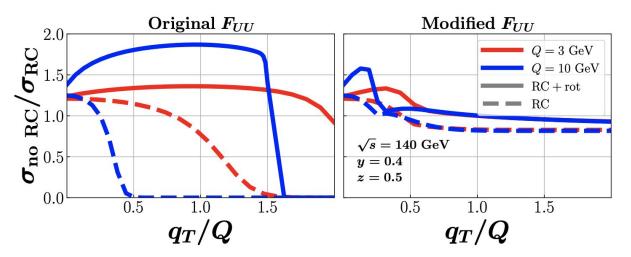
SIDIS with QED+QCD

$$\frac{d\sigma}{dxdyd\psi dzd\phi_h dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \frac{y}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \sum_i w_i F_i(x, Q^2, z, \mathbf{P}_{h\perp})$$

$$\frac{d\sigma}{dxdyd\psi dzd\phi_h dP_{h\perp}^2} = \int_{\zeta_{\min}}^1 d\zeta \int_{\xi_{\min}(\zeta)}^1 d\xi f_{k/l}(\xi) D_{k'/l'}(\zeta)$$

$$\times \frac{\hat{x}}{x\xi\zeta} \left[\frac{\alpha^2}{\hat{x}\hat{y}\hat{Q}^2} \frac{\hat{y}}{2(1-\hat{\varepsilon})} \left(1 + \frac{\hat{\gamma}^2}{2\hat{x}}\right) \sum_i \hat{w}_i F_i(\hat{x}, \hat{Q}^2, \hat{z}, \hat{\mathbf{P}}_{h\perp})\right]$$





QED RC depends significantly on the hadronic input

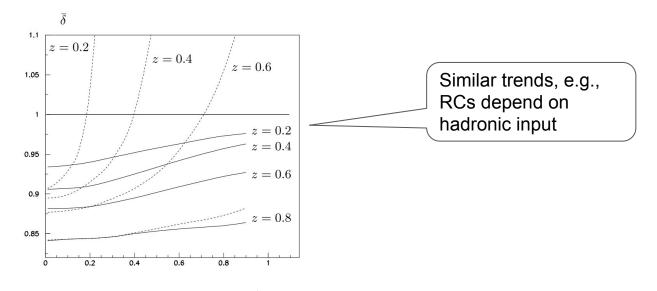
Radiative Effects in the Processes of Hadron Electroproduction

I.Akushevich, N.Shumeiko, A.Soroko

National Center of Particle and High Energy Physics, 220040 Minsk, Belarus

Received: date / Revised version: date

Abstract. An approach to calculate radiative corrections to unpolarized cross section of semi-inclusive electroproduction is developed. An explicit formulae for the lowest order QED radiative correction are presented. Detailed numerical analysis is performed for the kinematics of experiments at the fixed targets.



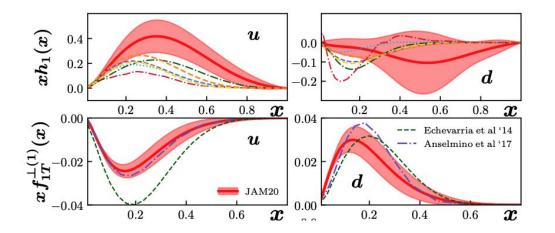
 $p_t/p_t max$

What about spin structures?

arXiv:2002.08384 (hep-ph)

[Submitted on 19 Feb 2020 (v1), last revised 2 Sep 2020 (this version, v2)] Origin of single transverse-spin asymmetries in high-energy collisions

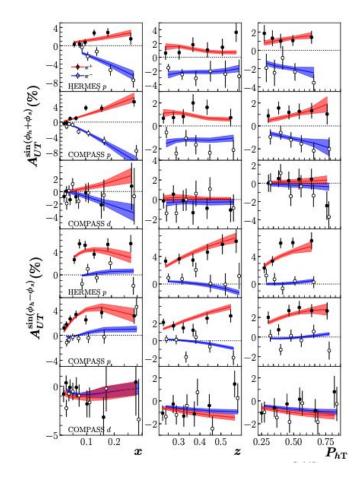
Justin Cammarota, Leonard Gamberg, Zhong-Bo Kang, Joshua A. Miller, Daniel Pitonyak, Alexei Prokudin, Ted C. Rogers, Nobuo Sato



Transversity

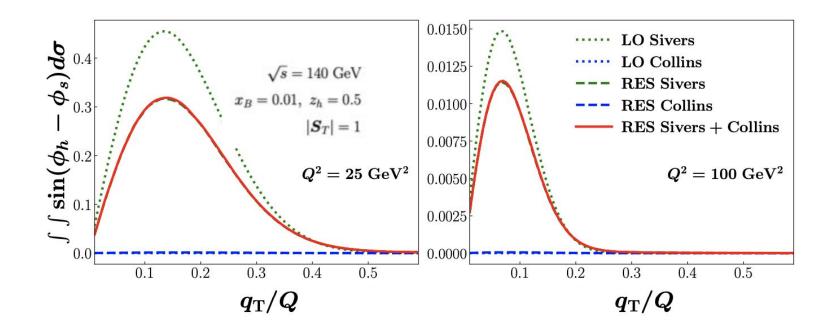
Sivers

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\varepsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}}\right.\\ &+\varepsilon\cos(2\phi_{h})F_{UU}^{\cos2\phi_{h}}+\lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}F_{LU}^{\sin\phi_{h}}\right.\\ &+S_{\parallel}\left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h}F_{UL}^{\sin\phi_{h}}+\varepsilon\sin(2\phi_{h})F_{UL}^{\sin2\phi_{h}}\right] \\ &+S_{\parallel}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}F_{LL}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{LL}^{\cos\phi_{h}}\right] \\ &+|S_{\perp}|\left[\sin(\phi_{h}-\phi_{S})\left[F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}+\varepsilon\sin(3\phi_{h}-\phi_{S})\right]\right.\\ &+\varepsilon\sin(\phi_{h}+\phi_{S})F_{UT}^{\sin(\phi_{h}+\phi_{S})}+\varepsilon\sin(3\phi_{h}-\phi_{S})F_{UT}^{\sin(3\phi_{h}-\phi_{S})}\right] \\ &+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S}F_{UT}^{\sin\phi_{S}}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S})F_{UT}^{\sin(2\phi_{h}-\phi_{S})}\right] \\ &+|S_{\perp}|\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h}-\phi_{S})F_{LT}^{\cos(\phi_{h}-\phi_{S})}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S}F_{LT}^{\cos\phi_{S}}\right.\\ &+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right]\right\}, \end{aligned}$$

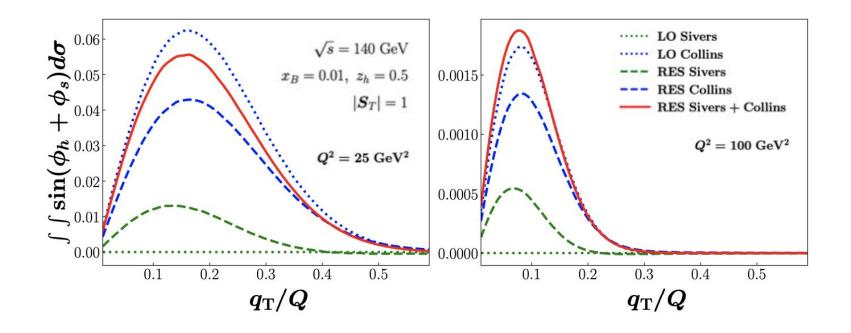


Standard approach

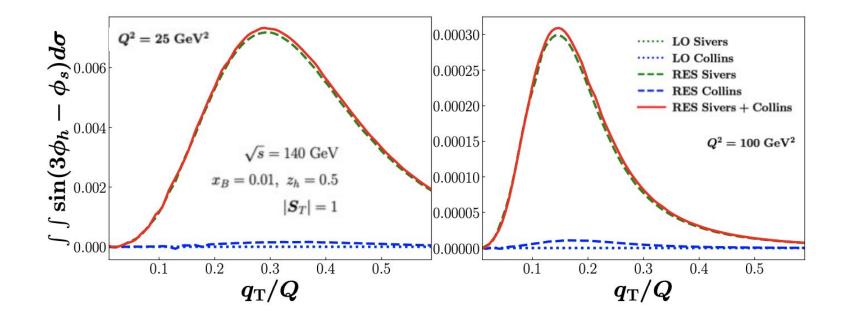
Sivers

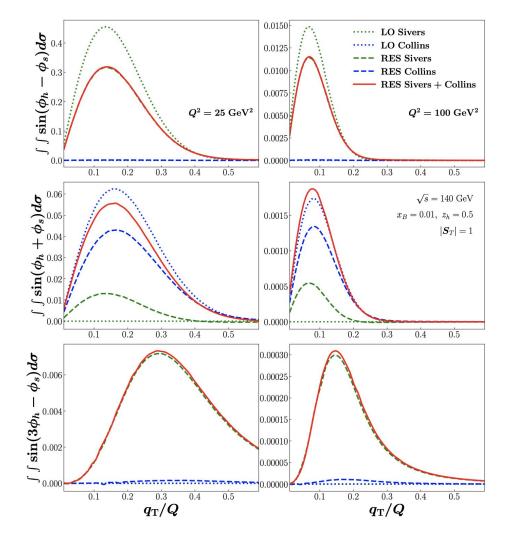


Collins



3phi_h - phi_s



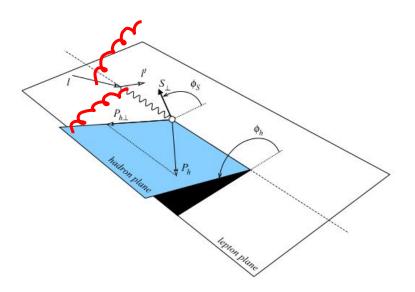


$$\begin{aligned} |\mathbf{S}_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right. \\ \left. + \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \right] \end{aligned}$$

- Visible leaking effects from Sivers -> Collins
- Not possible to isolate QED-free individual signals
- Any QED corrections to data is model dependent

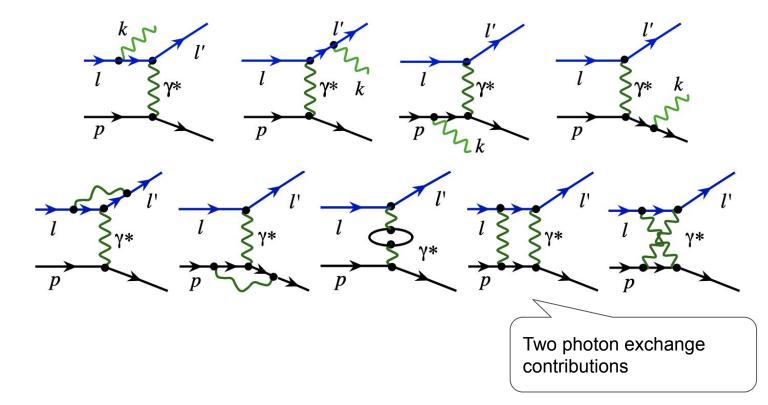
Summary/Outlook

- In the presence of QED radiation, the q direction is not fixed
- The experimental Breit Frame does not need to coincide with the actual Breit-frame needed in QCD factorization
- QED effects needs to take into account for reliable TMD SIDIS analysis



BACKUP

Hard part in QED



Kinematics

$$x_B = \frac{Q^2}{2P \cdot q}, \quad y = \frac{P \cdot q}{P \cdot l}, \quad z = \frac{P \cdot P_h}{P \cdot q}, \quad \gamma = \frac{2Mx_B}{Q}$$

$$\cos(\phi_h) = -\frac{l_\mu P_{h\nu} g_\perp^{\mu\nu}}{\sqrt{l_\perp^2 P_{h\perp}^2}}, \quad \cos(\phi_S) = -\frac{l_\mu S_\nu g_\perp^{\mu\nu}}{\sqrt{l_\perp^2 S_\perp^2}},$$
$$\sin(\phi_h) = -\frac{l_\mu P_{h\nu} \epsilon_\perp^{\mu\nu}}{\sqrt{l_\perp^2 P_{h\perp}^2}}, \quad \sin(\phi_S) = -\frac{l_\mu S_\nu \epsilon_\perp^{\mu\nu}}{\sqrt{l_\perp^2 S_\perp^2}},$$

$$l^{\mu}_{\perp} = g^{\mu\nu}_{\perp} l_{\nu}, \quad P^{\mu}_{h\perp} = g^{\mu\nu}_{\perp} P_{h\nu}$$

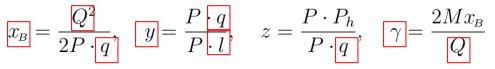
$$\varepsilon = \frac{1 - y - \frac{1}{4}\gamma^2 y^2}{1 - y + \frac{1}{2}y^2 + \frac{1}{4}\gamma^2 y^2}$$

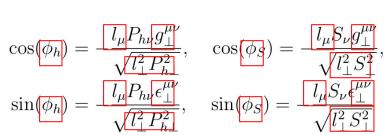
$$S^{\mu} = S_{\parallel} \frac{P^{\mu} - q^{\mu} M^2 / (P \cdot q)}{M \sqrt{1 + \gamma^2}} + S_{\perp}^{\mu}$$

$$S_{\parallel} = \frac{S \cdot q}{P \cdot q} \frac{M}{\sqrt{1 + \gamma^2}}, \quad S_{\perp}^{\mu} = g_{\perp}^{\mu\nu} S_{\nu}$$

$$g_{\perp}^{\mu\nu} = g_{\mu\nu} - \frac{q^{\mu}P^{\nu} + q^{\nu}P^{\mu}}{P \cdot q(1+\gamma^2)} + \frac{\gamma^2}{1+\gamma^2} \left(\frac{q^{\mu}q^{\nu}}{Q^2} - \frac{P^{\mu}P^{\nu}}{M^2}\right) \quad \epsilon_{\perp}^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma} \frac{P_{\rho}q_{\sigma}}{P \cdot q\sqrt{1+\gamma^2}}_{38}$$

Kinematics affected by QED

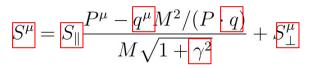


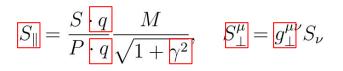


$$l^{\mu}_{\perp} = g^{\mu\nu}_{\perp} l_{\nu}, \quad P^{\mu}_{h\perp} = g^{\mu\nu}_{\perp} P_{h\nu}$$

$$g_{\perp}^{\mu\nu} = g_{\mu\nu} - \frac{q^{\mu}P^{\nu} + q^{\nu}P^{\mu}}{P \cdot q(1 + \gamma^2)} + \frac{\gamma^2}{1 + \gamma^2} \left(\frac{q^{\mu}q^{\nu}}{Q^2} - \frac{P^{\mu}P^{\nu}}{M^2}\right) \quad \epsilon_{\perp}^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma} \frac{P_{\rho}q_{\sigma}}{P \cdot q\sqrt{1 + \gamma^2}}$$

 $\varepsilon = \frac{1 - y - \frac{1}{4}\gamma^2 y^2}{1 - y + \frac{1}{2}y^2 + \frac{1}{4}\gamma^2 y^2}$





39

SIDIS with QED+QCD

$$\underbrace{\frac{d\sigma}{dxdyd\psi dzd\phi_h dP_{h\perp}^2}}_{\text{External kinematics}} = \int_{\zeta_{\min}}^1 d\zeta \int_{\xi_{\min}(\zeta)}^1 d\xi f_{k/l}(\xi) D_{k'/l'}(\zeta) \times \frac{\hat{x}}{x\xi\zeta} \left[\frac{\alpha^2}{\hat{x}\hat{y}\hat{Q}^2} \frac{\hat{y}}{2(1-\hat{\varepsilon})} \left(1 + \frac{\hat{\gamma}^2}{2\hat{x}} \right) \sum_i \hat{w}_i F_i(\hat{x}, \hat{Q}^2, \hat{z}, \hat{\mathbf{P}}_{h\perp}) \right]$$

External $[l_{\perp}]$ Kinematics[q]

$$[L]^{2} = Q^{2} \left(\frac{Q^{2} - M^{2} x^{2} y^{2} - Q^{2} y}{y^{2} (4M^{2} x^{2} + Q^{2})} \right)$$
(C1)

$$[q \cdot P_h] = \frac{Q}{(4M^2x^2)} \left(Q^3 z - \sqrt{(4M^2x^2 + Q^2)(Q^4z^2 - 4M^2M_h^2x^2 - 4M^2P_{h\perp}^2x^2)} \right)$$
(C2)

$$[l \cdot P_h] = \frac{1}{y(4M^2x^2 + Q^2)} \left(-4M^2 P_{h\perp}[l_{\perp}]x^2y\cos(\phi_h) + 2M^2x^2y \ [q \cdot P_h] - P_{h\perp}Q^2[l_{\perp}]y\cos(\phi_h)\right)$$

$$-Q^4 y z/2 + Q^4 z + Q^2 [q \cdot P_h])$$
(C3)

$$[l' \cdot P_h] = [l \cdot P_h] - [q \cdot P_h]$$
(C4)

$$[q \cdot S] = -\frac{Q}{2Mx} \sqrt{-(|\mathbf{S}_{\perp}| - 1)(|\mathbf{S}_{\perp}| + 1)(4M^2x^2 + Q^2)}$$
(C5)

$$[l \cdot S] = \frac{1}{y(4M^2x^2 + Q^2)} \left(-4M^2 |\mathbf{S}_{\perp}| l_{\perp} x^2 y \cos(\phi_S) + 2M^2 x^2 y [q \cdot S] -Q^2 |\mathbf{S}_{\perp}| l_{\perp} y \cos(\phi_S) + Q^2 [q \cdot S] \right)$$
(C6)

$$[l' \cdot S] = [l \cdot S] - [q \cdot S] \tag{C7}$$

$$\left[\epsilon_{\mu\nu\rho\sigma}P^{\mu}l^{\nu}l^{\prime\rho}P_{h}^{\sigma}\right] = -\frac{P_{h\perp}Q^{2}[l_{\perp}]}{2x}\sqrt{1 + \frac{4M^{2}x^{2}}{Q^{2}}}\sin(\phi_{h})$$
(C8)

$$[\epsilon_{\mu\nu\rho\sigma}P^{\mu}l^{\nu}l^{\prime\rho}S^{\sigma}] = -\frac{|\mathbf{S}_{\perp}|Q^{2}[l_{\perp}]}{2x}\sqrt{1 + \frac{4M^{2}x^{2}}{Q^{2}}}\sin(\phi_{S})$$
(C9)

(1)

Internal Kinematics

$$l \rightarrow \xi k$$

 $l' \rightarrow k'/\zeta$

. -

Г

$$[k \cdot P_h] = \xi[l \cdot P_h], \quad [k' \cdot P_h] = \frac{1}{\zeta}[l' \cdot P_h]$$
(C12)

$$[k \cdot S] = \xi[l \cdot S] \qquad [k' \cdot S] = \frac{1}{\zeta}[l' \cdot S] \tag{C13}$$

$$\epsilon_{\mu\nu\rho\sigma}P^{\mu}k^{\nu}k^{\prime\rho}P_{h}^{\sigma}] = \frac{\xi}{\zeta}[\epsilon_{\mu\nu\rho\sigma}P^{\mu}l^{\nu}l^{\prime\rho}P_{h}^{\sigma}], \quad [\epsilon_{\mu\nu\rho\sigma}P^{\mu}k^{\nu}k^{\prime\rho}S^{\sigma}] = \frac{\xi}{\zeta}[\epsilon_{\mu\nu\rho\sigma}P^{\mu}l^{\nu}l^{\prime\rho}S^{\sigma}]$$
(C14)

$$[\hat{q} \cdot P_h] = [k \cdot P_h] - [k' \cdot P_h], \quad [\hat{q} \cdot S] = [k \cdot S] - [k' \cdot S]$$
(C15)

$$[\hat{P}_{h\perp}]^2 = \frac{1}{\widehat{Q}^2 (4M^2 \hat{x}^2 + \widehat{Q}^2)} \left(-4M^2 M_h^2 \widehat{Q}^2 \hat{x}^2 - 4M^2 \hat{x}^2 [\hat{q} \cdot P_h]^2 - M_h^2 \widehat{Q}^4 + \widehat{Q}^6 \hat{z}^2 + 2\widehat{Q}^4 \hat{z} [\hat{q} \cdot P_h] \right)$$
(C16)

$$|\hat{\mathbf{S}}_{\perp}|]^{2} = \frac{1}{\hat{Q}^{2}(4M^{2}\hat{x}^{2} + \hat{Q}^{2})} (4M^{2}\hat{Q}^{2}\hat{x}^{2} - 4M^{2}\hat{x}^{2}[\hat{q}\cdot S]^{2} + \hat{Q}^{4})$$
(C17)

$$[\hat{S}_{\parallel}] = \frac{2M\hat{x}[\hat{q} \cdot S]}{\hat{Q}^2 \sqrt{4M^2 \hat{x}^2 / \hat{Q}^2 + 1}}$$
(C18)

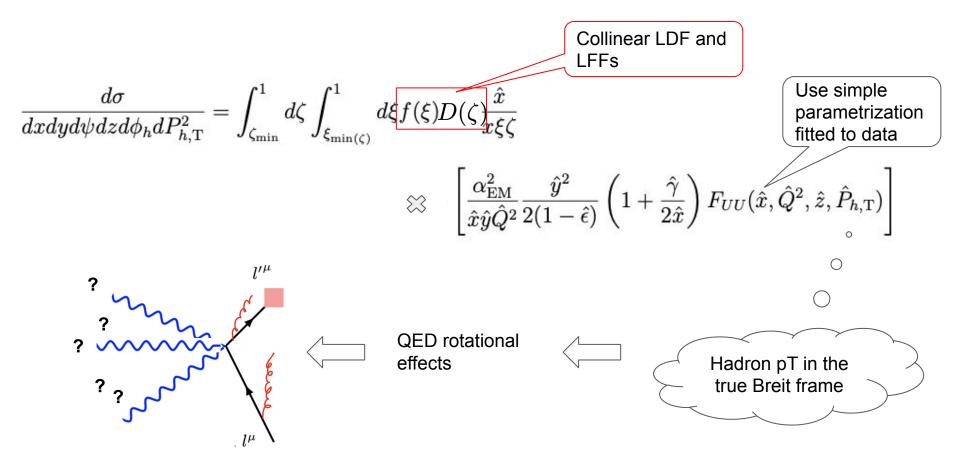
$$[\sin(\hat{\phi}_{h})] = -2\hat{x} \frac{[\epsilon_{\mu\nu\rho\sigma}P^{\mu}k^{\nu}k'^{\rho}P_{h}^{\sigma}]}{[\hat{P}_{h\perp}]\hat{Q}^{2}[k_{\perp}]\sqrt{4M^{2}\hat{x}^{2}/\hat{Q}^{2}+1}} [\cos(\hat{\phi}_{h})] = \frac{1}{2[\hat{P}_{h\perp}][k_{\perp}]\hat{y}(4M^{2}\hat{x}^{2}+\hat{Q}^{2})} \left(4M^{2}\hat{x}^{2}\hat{y}[\hat{q}\cdot P_{h}] - \hat{Q}^{4}\hat{y}\hat{z} + 2\hat{Q}^{2}(\hat{Q}^{2}\hat{z}+[\hat{q}\cdot P_{h}]) - \hat{Q}^{4}\hat{y}\hat{z} + 2\hat{Q}^{2}(\hat{Q}^{2}\hat{z}+[\hat{q}\cdot P_{h}]) \right)$$

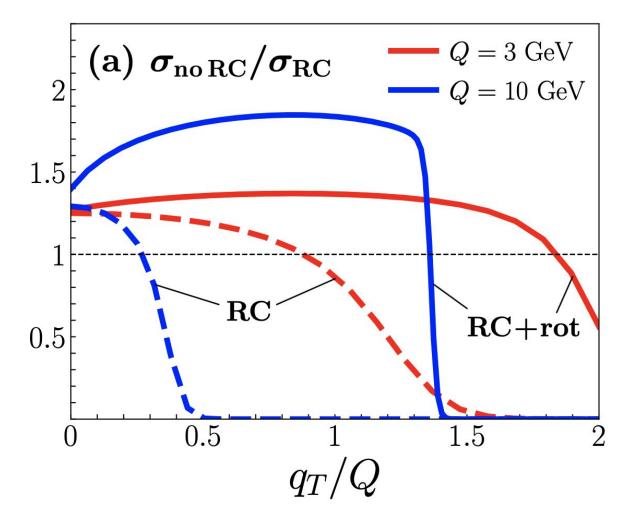
$$[\sin(\hat{\phi}_{S})] = -2\hat{x} \frac{[\epsilon_{\mu\nu\rho\sigma}P^{\mu}k^{\nu}k'^{\rho}S^{\sigma}]}{[|\hat{\mathbf{S}}_{\perp}|]\hat{Q}^{2}[k_{\perp}]\sqrt{4M^{2}\hat{x}^{2}/\hat{Q}^{2}+1}} [\cos(\hat{\phi}_{S})] = \frac{1}{2[\hat{P}_{h\perp}][k_{\perp}]\hat{y}(4M^{2}\hat{x}^{2}+\hat{Q}^{2})} \left(2M^{2}\hat{x}^{2}\hat{y}[\hat{q}\cdot S] + \hat{Q}^{2}[\hat{q}\cdot S] - \hat{y}(4M^{2}\hat{x}^{2}+\hat{Q}^{2})[k\cdot S]\right)$$

$$(C19)$$

Case study: FUU

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2\left(1-\varepsilon\right)} \left(1+\frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos\phi_h F_{UU}^{\cos\phi_h} \right. \\ &+ \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_h F_{LU}^{\sin\phi_h} \\ &+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_h F_{UL}^{\sin\phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right] \\ &+ S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_h F_{LL}^{\cos\phi_h} \right] \\ &+ \left| S_{\perp} \right| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right. \\ &+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \\ &+ \sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \right] \\ &+ \left| S_{\perp} \right| \lambda_e \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_S F_{LT}^{\cos\phi_S} \\ &+ \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \bigg\}, \end{split}$$





$\sqrt{s} = 140 \text{ GeV}$ y = 0.4z = 0.5