Radiative correction for SIDIS Factorized vs Traditional approach

March 7-12, 2022

Bishnu Karki

Duke University, NC

RC in SIDIS

- Transverse Momentum Dependent PDFs (TMDs) provide a new way to understand 3-D structure of the nucleon
- TMDs can be accessed via Semi-Inclusive Deep Inelastic Scattering (SIDIS) measurements
- In such reactions, with a large momentum transfer, photons are radiated from incoming, outgoing leptons
- Radiation alters momentum transfer and angular modulation between leptonic and hadronic planes
- Collision induced QED radiation must be taken into account to reliably extract TMDs
- RC more important in future EIC and SoLID kinematics, high q allows more phase space to shower

Radiative correction vs radiative contribution

- Traditional approach (QED radiative correction) I. Akushevich and A. Ilychev Physics Review D100 (2019) $\sigma_{obs}(x_B, Q^2) = R_{QED}(x_B, Q^2; x_{B,true}, Q^2_{true}) \times \sigma_{Born}(x_{B,true}, Q^2_{true}) + \sigma_X(x_B, Q^2)$
- R_{oed} and σ_x are computed theoretically
- Prescription of matching Born cross-section by removing radioactive effects becomes increasingly difficult for SIDIS or exclusive processes
- Analytical expression for the lowest order RC to SIDIS

Factorized approach (QED radiative contribution)

T. Liu et al. Journal of High energy Physics 157, (2021)

$$\sigma_{obs}(x_B, Q^2) = \sigma_{lep}^{univ}(\mu^2; m_e^2) \otimes \sigma_{had}^{univ}(\mu^2; \Lambda_{QCD}^2) \otimes \sigma_{IR-safe}(x_B, true, Q_{true}^2, \mu^2) + \mathcal{O}\left(\frac{\Lambda_{QCD}^2}{Q^2}, \frac{m_e^2}{Q^2}\right)$$

- Simultaneously treats QED and QCD effects on the same footing
- Unify QED and QCD contribution to the lepton-nucleon scattering cross-section in a consistent factorization formalism
- All infrared sensitive QED contribution absorbed to the universal lepton and hadronic distribution
- Infrared safe contribution are calculated order by order

Factorized approach

$$\frac{d^6\sigma_{SIDIS}}{dx_B dy d\phi_s dz_h d\phi_h dP_{hT}^2} = \sum_{ij\lambda_k} \int_{\zeta_{min}}^1 \frac{d\zeta}{\zeta^2} \int_{\xi_{min}}^1 \frac{d\xi}{\xi} f_{e/e}(\xi) D_{e/e}(\zeta) \\ \times \frac{\hat{x_B}}{x_B\xi\zeta} \left[\frac{\alpha^2 \hat{y}}{\hat{x_B}\hat{Q}^2 2(1-\hat{\epsilon})} \left(1 + \frac{\hat{\gamma}^2}{2\hat{x_B}}\right) \sum_n \hat{w_n} F_n^h(\hat{x_B}, \hat{Q^2}, \hat{z_h}, P_{hT}^2) \right]$$

Evaluated in a "virtual photon-hadron" frame

$$D_{e/e}^{(1)}(\zeta,\mu) = \frac{\alpha}{2\pi} \left[\frac{1+\zeta^2}{1-\zeta} \ln \frac{\zeta^2 \mu^2}{(1-\zeta)^2 m_e^2} \right]_+ \qquad f_{e/e}^{(1)}(\xi,\mu^2) = \frac{\alpha}{2\pi} \left[\frac{1+\xi^2}{1-\xi} \ln \frac{\mu^2}{(1-\xi)^2 m_e^2} \right]_+$$

Apply a (ξ, ζ) -dependent Lorentz transformation:

 $\{\hat{q}, P, \hat{P}_h\}$ $\{q, P, P_h\}$ In a frame to compare with exp. measurement (ξ, ζ)

- Leading power IR sensitive contribution factorized into LDFs and LFFs
- IR safe contribution are calculated order-by-order in power of $\boldsymbol{\alpha}$
- Collinear QED factorization for both inclusive DIS and SIDIS

Radiative correction (Traditional approach)

• Radiative part σ^R is divided into soft and hard parts by cutoff in photon energy \overline{k}_0 .

$$\sigma = \underbrace{\sigma^{B} + \frac{\alpha}{\pi} (\delta_{\text{vert}} + \delta_{\text{vac}}) \sigma^{B} + \sigma^{AMM} + \underbrace{\int_{0}^{\overline{k}_{0}} \sigma^{R} d^{3} \mathbf{k}}_{\text{soft part}} + \underbrace{\int_{\overline{k}_{0}}^{\infty} \sigma^{R} d^{3} \mathbf{k}}_{\text{hard part}}$$

• To handle soft part of σ^R , split into components σ^R_{IR} (σ^R_F), with (without) infrared divergence, in such a way that

$$\sigma^R = \sigma^R_{IR} + \sigma^R_F, \quad \int_0^{\overline{k}_0} \sigma^R_{IR} \ d^3 \mathbf{k} = \frac{\alpha}{\pi} \delta_S \sigma^B$$

Difficult term becomes

$$\int_{0}^{\bar{k}_{0}} \sigma^{R} d^{3} \boldsymbol{k} = \frac{\alpha}{\pi} \delta_{S} \sigma^{B} + \int_{0}^{\bar{k}_{0}} \sigma^{R}_{F} d^{3} \boldsymbol{k}^{R} d^{3} \boldsymbol{k}^{R}$$

• Infrared divergence in δ_s adds with δ_{vert} to form δ_{vs} (without infrared divergence).

$$\sigma \approx \underbrace{\sigma^{B} + \frac{\alpha}{\pi} (\delta_{VS} + \delta_{\text{vac}}) \sigma^{B} + \sigma^{AMM}}_{\text{soft part}} + \underbrace{\int_{\bar{k}_{0}}^{\infty} \sigma^{R} d^{3} \mathbf{k}}_{\text{hard part}}, \quad \delta_{VS} = \delta_{S} + \delta_{\text{vert}}$$

SIDIS Unpolarized cross-section without radiation

Unpolarized beam and transversely polarized target

$$\frac{d^{6}\sigma_{SIDIS}}{dx_{B}dyd\phi_{s}dz_{h}d\phi_{h}dP_{hT}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)\left\{F_{UU}+|S_{\perp}|\left[\sin(\phi_{h}-\phi_{s})F_{UT}^{Siv}+\epsilon\sin(\phi_{h}+\phi_{s})F_{UT}^{Col}+\epsilon\sin(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{UT}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{U}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{U}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{U}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{U}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{U}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{U}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{U}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{U}^{Col}+\epsilon\cos(\phi_{h}-\phi_{s})F_{U}^$$

- $H(e,e'\pi^{+})X$ reaction
- Case Study F_{UU}
- SF from JAM3D20 global analysis J.Cammarota et al. Phys. Rev. D, 102:054002

$$R_{Born} = \frac{d\sigma_{Born}^{Factorized}}{d\sigma_{Born}^{Traditional}}$$

- Used two different codes for cross-section extraction
- Born cross-section (without radiation) agrees between two codes
- Consistency in structure function and kinematics between two codes

Traditional vs Factorized approach Unpolarized cross-section

- H(e,e'π⁺)X reaction
- Case Study F_{UU}

Traditional vs Factorized approach

Unpolarized cross-section

- H(e,e'π⁺)X reaction
- Case Study F

$\sqrt{s} \; (\text{GeV})$	x_B	$Q^2 \; ({ m GeV}^2)$	z_h	RC ratio
Jefferson Lab Kinematics				
3.2	0.32	2.3	0.55	1.06
4.9	0.48	8	0.375	1.08
6.7	0.48	15	0.375	1.09
EIC Kinematics				
140	0.01	9	0.5	1.08
140	0.01	25	0.5	1.10
140	0.01	100	0.5	1.10

6-10 % difference in RC factor between two approaches

UT cross-section

$$\frac{d^{6}\sigma_{SIDIS}}{dx_{B}dyd\phi_{s}dz_{h}d\phi_{h}dP_{hT}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)\left\{+\left|S_{\perp}\right|\left[\sin(\phi_{h}-\phi_{s})F_{UT}^{Siv}+\epsilon\sin(\phi_{h}+\phi_{s})F_{UT}^{Col}+\epsilon\sin((\phi_{h}-\phi_{s})F_{U}^{Col}+\epsilon\sin((\phi_{h}-\phi_{s})+\epsilon\cos((\phi_{h}-\phi_{s}))F_{U}^{Col}+\epsilon\sin((\phi_{h}-\phi_{s})+\epsilon\cos((\phi_{h}-\phi_{s}))F_{U}^{Col}+\epsilon\sin((\phi_{h}-\phi_{s})+\epsilon\cos((\phi_{h}-\phi_{s}))F_{U}^{Col}+\epsilon\cos((\phi_{h}-\phi_{s})+\epsilon\cos((\phi_{h}-\phi_{s}))F_{U}^{Col}+\epsilon\cos((\phi_{h}-\phi_{s})+\epsilon\cos((\phi_{h}-\phi_$$

Integrating the UT cross-section provides: Sivers $sin(\phi_h - \phi_s)$ and Collins $sin(\phi_h + \phi_s)$ modulation

For instance,

$$\frac{d^6\sigma_{SIDIS}}{dx_Bdyd\phi_sdz_hd\phi_hdP_{hT}^2}\bigg|_{UT}^{\sin(\phi_h-\phi_s)} = \int d\phi_h d\phi_s \sin(\phi_h-\phi_s) \frac{d^6\sigma_{SIDIS}}{dx_Bdyd\phi_sdz_hd\phi_hdP_{hT}^2}$$

At structure function level

$$F_{UT}^{Siv} = \int d\phi_h d\phi_s \sin(\phi_h - \phi_s) \Big[\sin(\phi_h - \phi_s) F_{UT}^{Siv} + \epsilon \sin(\phi_h + \phi_s) F_{UT}^{Col} + \epsilon \sin(3\phi_h - \phi_s) F_{UT}^{Pret} \Big]$$

Preliminary results

JLab: $\sqrt{s} = 6.70 \text{ GeV}$ $Q^2 = 15 \text{ GeV}^2$ Z = 0.375 $x_B = 0.48$

Without radiation Sivers Sin($\phi_h - \phi_s$) and Collins Sin($\phi_h + \phi_s$) modulation agrees well

Preliminary results

JLab: $\sqrt{s} = 6.70 \text{ GeV}^2 \text{ Q}^2 = 15 \text{ GeV}^2 \text{ Z} = 0.375 \text{ X}_{\text{B}} = 0.48$

Radiative effects on Sivers Sin($\phi_h - \phi_s$) and Collins Sin($\phi_h + \phi_s$) modulation

Preliminary results

EIC: $\sqrt{s} = 140 \text{ GeV}$ Q²=100 GeV² Z = 0.5 y = 0.4

Radiative effects on Sivers Sin($\phi_h - \phi_s$) and Collins Sin($\phi_h + \phi_s$) modulation

EIC: $\sqrt{s} = 140 \text{ GeV}$ Q²=25 GeV² Z = 0.5 y = 0.4

Traditional approach

Leakage effect in factorized approach but not in traditional approach

Conclusion

- Compared the RC between two different approaches:
 - Factorized approach T. Liu et al. Journal of High energy Physics 157, (2021)
 - Traditional approach I. Akushevich and A. Ilychev Physics Review D100 (2019)
- In case of unpolarized F about 6-10 % difference in RC between two approach
- For single transverse spin asymmetry difference is larger at EIC kinematics
- This comparison will provide an understanding of systematic due to RC which is one of the most important source of uncertainty in extracting TMD-PDFs

Brookhaven National Laboratory (BNL) Directed Research and Development (LDRD) project number 21-045S

Acknowledgment Duane Byer, Nobuo Sato, Tianbo Liu, and Haiyan Gao Thank you

Traditional vs Factorized approach Unpolarized cross-section

Contribution of exclusive tail

- Estimated to have significant contribution from exlcusive channels Akushevich, Ilyichev, Osipenko, Phys.Lett.B672(2009)35
- Due to limited knowledge of exclusive SF its hard to estimate
- From factorization point of view it is a power suppressed
- At high energy, exclusive tail does not enter, $W_{\mbox{\tiny min}}$ exists

Radiative correction

Total SIDIS cross-section with RC is

$$\sigma = \sigma^{B} + \frac{\alpha}{\pi} (\delta_{\text{vert}} + \delta_{\text{vac}}) \sigma^{B} + \sigma^{AMM} + \int \sigma^{R} d^{3} \boldsymbol{k}$$

• Radiative part σ^R is divided into soft and hard parts by cutoff in photon energy \bar{k}_0 .

$$\sigma = \sigma^{B} + \frac{\alpha}{\pi} (\delta_{\text{vert}} + \delta_{\text{vac}})\sigma^{B} + \sigma^{AMM} + \int_{0}^{\overline{k}_{0}} \sigma^{R} d^{3} \mathbf{k} + \underbrace{\int_{\overline{k}_{0}}^{\infty} \sigma^{R} d^{3} \mathbf{k}}_{\text{soft part}} + \underbrace{\int_{0}^{\infty} \sigma^{R} d^{3} \mathbf{k}}_{\text{hard part}}$$

- Events are randomly chosen to be soft or hard, based on total soft/hard cross-sections.
- Integral over soft part of σ^R is computationally expensive.

Preliminary results

EIC: $\sqrt{s} = 140 \text{ GeV}$ Q² = 9 GeV² Z = 0.5 y = 0.4

Radiative effects on Sivers Sin($\phi_h - \phi_s$) and Collins Sin($\phi_h + \phi_s$) modulation

Traditional vs Factorized approach Unpolarized cross-section

