TMD Fragmentation Functions

CPHI 2022 March 9, 2022

Ralf Seidl (RIKEN)

	Single hadron FF		
Unpolarized ingredients	Polarized ingredients	Flavor sensitivity	
Single hadron cross sections: $e^+e^- \rightarrow hX$ $D^h_{1,q}(z,Q^2)$ <u>PRL111 (2013) 062002</u> <u>PRD101(2020) 092004</u>	Azimuthal asymmetries: $e^+e^- \rightarrow (h)(h)X,$ $\cos(\phi_1 + \phi_2)$ $H_{1,q}^{\perp(1)h}(z,Q^2)$ PRL 96 (2006) 232002 PRD 78 (2008) 032011	Unpol SIDIS, pp: $\frac{d\sigma}{dz}$ $e^+e^- \rightarrow (h)(h)X$ PRD92 (2015) 092007 PRD101(2020) 092004 and scale dependence	
Transverse momentum dependent FFs: $e^+e^- \rightarrow (h)X$ $D^h_{1,q}(z, k_T, Q^2)$ PRD 99 (2019) 112006	Transverse momentum dependent asymmetries $e^+e^- \rightarrow (h)(h)X,$ $\cos(\phi_1 + \phi_2),Q_t$ $H_{1,q}^{\perp h}(z, k_T, Q^2)$ PRD100 (2019) 92008	Polarizing Λ fragmentation PRL 122 (2019), 042001 $D_{1,q}^{\perp h}(z,k_T,Q^2)$	
	Dihadron FF (IFF)		
Unpolarized ingredients	Polarized ingredients	Flavor sensitivity	
Dihadron cross sections $e^+e^- \rightarrow (hh)X$ $D^{h_1h_2}_{1,q}(z,m,Q^2)$	Azimuthal asymmetries: $e^+e^- \rightarrow (hh)(hh)X,$ $\cos(\phi_1 + \phi_2),$ $H^{h_1,h_2,\triangleleft}_{1,q}(z,Q^2,M_h)$	Unpol SIDIS, pp: $\frac{d^2\sigma}{dzdm}$	
<u>PRD96 (2017) 032005</u>	PRL107 (2011) 072004	Ζ	

	Single hadron FF									
Unpolarized ingredients	Polarized ingredients	Flavor sensitivity								
Single hadron cross sections: $e^+e^- \rightarrow hX$ $D^h_{1,q}(z,Q^2)$	Azimuthal asymmetries: $e^+e^- \rightarrow (h)(h)X,$ $\cos(\phi_1 + \phi_2)$ $H_{1,q}^{\perp(1)h}(z,Q^2)$	Unpol SIDIS, pp: $\frac{d\sigma}{dz}$ $e^+e^- \rightarrow (h)(h)X$								
PRD 88 (2013) 032011 (Babar)	PRD 92 (2015) 111101 (Babar K) PRL 116 (2016) 042001 (BESIII)	and scale dependence								
Transverse momentum dependent FFs: $e^+e^- \rightarrow (h)X$ $D^h_{1,q}(z, k_T, Q^2)$	Transverse momentum dependent asymmetries $e^+e^- \rightarrow (h)(h)X,$ $\cos(\phi_1 + \phi_2), Q_t$ $H_{1,q}^{\perp h}(z, k_T, Q^2)$ PRD 90 (2014) 052003 (Babar)	BABAR BERGERER								
Dihadron FF (IFF)										
Unpolarized ingredients	Polarized ingredients	Flavor sensitivity								
Dihadron cross sections $e^+e^- \rightarrow (hh)X$ $D^{h_1h_2}_{1,q}(z,m,Q^2)$	Azimuthal asymmetries: $e^+e^- \rightarrow (hh)(hh)X,$ $\cos(\phi_1 + \phi_2),$ $H^{h_1,h_2,\triangleleft}_{1,q}(z,Q^2,M_h)$	Unpol SIDIS, pp: $\frac{d^2\sigma}{dzdm}$								

K_T Dependence of FFs in e⁺e⁻

- Gain also sensitivity into transverse momentum generated in fragmentation
- Two ways to obtain transverse momentum dependence
 - Traditional 2-hadron FF
 - Juse transverse momentum between two hadrons (in opposite hemispheres)
 - \rightarrow Usual convolution of two transverse momenta
 - Single-hadron FF wrt to Thrust
 - \rightarrow No convolution
 - \rightarrow Need correction for $q\bar{q}$ axis (similar to a Jet function)
 - Single-hadron FF wrt jet axis
 - →No convolution
 - →Need Jet function

Ongoing (nearly finished)

Published

Ongoing

(started)

Cross sections various hadrons

Fits vs P_{hT}^2

Fit exponential to smaller transverse momenta for Gaussian P_{hT} dependence and power low at higher P_{hT}

3/9/2022

Transverse momentum dependent unpol FFs: First direct (no convolutions) measurement of z and kt dependence

Extraction of Gaussian kt widths

Gaussian widths comparison to MC

first direct (no convolutions) measurement of z dependence of Gaussian widths

Phenomenological Fits of cross sections I

Kang, et. al. JHEP 12 (2020) 127

- SCET formalism
- Inclusion of Thrust axis possible in similar way to Jet functions TMD and threshold resummation needed
- TMD region of j_T<<Q
- Additional description for high-z region

RIKEN

Phenomenological Fits of cross sections II

Boglione, Simonelli JHEP 02 (2021) 076

- NLO and NLL description of cross sections, based on NNFF1.0_NLO
- Collinear parts of phase space need to be cut out (esp. high P_T)
- Intermediate Thrust range can be described well
- High thrust and high z range would need different pheno treatment

Collins fragmentation function

Φ

 $\vec{p}_{h\perp}$

J. Collins, Nucl. Phys. B396, (1993) 161

 \vec{S}_q

 $D_{q\uparrow}^{h}(z, P_{h\perp}) = D_{1,q}^{h}(z, P_{h\perp}^{2}) + H_{1,q}^{\perp h}(z, P_{h\perp}^{2}) \frac{(\hat{\mathbf{k}} \times \mathbf{P}_{h\perp}) \cdot \mathbf{S}_{q}}{zM_{h}}$

 h, \bar{p}_h

- Spin of quark correlates with hadron transverse momentum
- →translates into azimuthal anisotropy of final state hadrons

Belle Collins asymmetries

- Red points : $cos(\phi_1 + \phi_2)$ moment of Unlike sign pion pairs over like sign pion pair ratio : A^{UL}
- Green points : $cos(\phi_1 + \phi_2)$ moment of Unlike sign pion pairs over any charged pion pair ratio : A^{UC}
- Collins fragmentation is large effect
- Consistent with SIDIS indication of sign change between favored and disfavored Collins FF

RS et al (Belle), PRL96: 232002 PRD 78:032011, Erratum D86:039905

Transverse momentum

- Add transverse momentum to Collins asymmetries' z dependence
- Currently only 1 or 2dimensional extractions available (qt, z1xz₂, p_{t1}xp_{t2}, z₁xp_{t1})
- Increasing asymmetries with both z and pt, but pt reach limited
- Multidimensional extractions needed

13

RIKEN

Quark transversity via Collins: Kaons

BABAR: PRD 92 (2015) 111101

Anselmino et al: PRD 93 (2016) 034025

0.5 0.9/0.2 0.3 0.5

0.2

0.3

3/9/2022

- Addition of kaon Collins fragmentation strongly needed for flavor decomposition of quark transversity
- Large amount of potentially participating FFs well described by light and "heavy" favored and disfavored FFs
- Allows inclusion of HERMES and COMPASS kaon asymmetries (+eventually EIC) in fits
- Also: pion Collins at lower scale(BESIII) consistent with TMD evolution

Ongoing work: Collins multidimensional analysis and Kaon combinations

- Currently revisiting kaon combinations of the Collins asymmetries
- While doing so, try to perform a full multi-dimensional analysis:
 - Consider :
 - 6 (z₁) x 6 (z₂) x 5(k₁) x 5(k₂) x 1 (costheta) x 8 (phi) for A₁₂ method
 6 (z₁) x 6 (z₂) x 10(q_t) x 1 (costheta) x 8 (phi) for A₀ method

- Perform most correction steps similar to recent analyses (PID, smearing)
 - Possibly simplified smearing unfolding as each z₁-z₂ bin separately (z smearing almost nonexistent in such a binning)
 - non-qqbar removal, charm removal, ISR correction and acceptance might require introduction of nonzero MC asymmetries

Single Λ polarization measurements

- Related to open question about Λ polarization in hadron collisions from 40 years ago!
- Fragmentation counterpart to the Sivers Function:
 - unpolarized parton fragments into transversely polarized baryon with transverse momentum wrt to parton direction
- Reconstruct Λ , its transverse momentum and polarization

YingHui Guan (Indiana/KEK): PRL 122 (2019), 042001

3/9/2022

Transverse momentum dependence

- Different behavior for low and high-z :
- At low z small
- At intermediate z falling Polarization with P_t
- At high z increasing polarization with P_t

Opposite hemisphere pion correlation

- Interesting z_{π} and z_{Λ} dependence :
- At low z_Λ light quark fragmentation dominant, some charm in π⁻ → different signs
- At high z_Λ strange + charm fragmentation more relevant
 → same signs
- Several fits to data with slightly different results

18

RIKEN

Not TMD(yet) but indirectly related: Weak and strong decay feed-down

- Hadrons from Weak decays technically not part of FF definition, but often included
- Strong decays part of total sum over hadronic final state
- Both can affect the z (and transverse momentum) dependence of the detected hadrons:
 - naturally included in unpolarized MC,
 - in part added to polarized generators
 (→Albi)
 - How does PHENO handle this (additional parameters?)

Decaying hadron fractions in light hadrons at \sqrt{s} = 10.58 GeV (PYTHIA6):

Bands: various Pythia tunes, including PARJ(11) range from 0.3-0.55 Dashed lines: default, but PARJ(11) =0.6

Ongoing: Decaying particle FFs

- Study the explicit differential cross sections for VMs, D mesons as a function of x_p
- Mostly mass distributions and fits well-behaved, except for ρ– ω (interference) and more exotic resonances
- Also of interest for ultra highenergetic cosmic ray air shower research (muon problem)

• Example from MC at Belle energies (within Barrel acceptance):

Next/other steps: PHENIX/sPHENIX and EIC

Central rapidity pion and eta A_Ns

PRD 103 (2021) 052009

- Central asymmetries consistent with zero
- sensitive to quark-gluon and trigluon correlation functions in initial and final state effects
- Possible reasons for small asymmetries: Cancelations between flavors or initial/final state effects, lower x than forward (valence effects)
- Possible effects pushed below the 1% level
- Substantial updates for π^0 and η single spin asymmetries at central rapidity

Charged pion A_Ns at mid-rapidity

- Charged pion A_N consistent with zero and π^0 results for each charge
- But indication of differences between charges seen → could be an indication of flavor dependent effect in initial (up vs down quarks) or final state (u→π⁺ vs u→π⁻)

arXiv:2112.05680 (accepted for PRD)

First direct photon A_Ns

- First direct photon A_N extracted at RHIC
- Mostly sensitive to initial state effects (no fragmentation) → quark-gluon and gluon-gluon correlation functions
- Power to constrain gluongluon correlation function well, since quark impact expected to be small

Phys.Rev.Lett. 127 (2021) 162001

Heavy Flavor electron A_Ns

- Sensitive to tri-gluon correlators
- Potential to constrain parameter ranges in D meson A_N theory calculations: <u>PRD78</u>, 114013 (Z.B. Kang, J.W. Qiu, W. Vogelsang, F. Yuan)
- Final result will have added lower P_T data points

RIKEN

sPHENIX

- Compact detector with good Jet and tracking capabilities over large range (|η|<1.4) using BaBar 1.5 T solenoid
- Main purpose for remaining HI physics such as jet and Upsilon state R_{AA} measurements
- Many cold-QCD possibilities

Proposed run schedule, year 1-3

sPHENIX BUP2021 [sPH-TRG-2021-001], 24 (& 28) cryo-week scenarios

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
	X	[GeV]	Weeks	Weeks	z < 10 cm	$ z < 10 ext{ cm}$
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz] 4.5 (6.2) pb ⁻¹ [10%-str]	45 (62) pb ⁻¹
2024	p [↑] +Au	200	-	5	0.003 pb ⁻¹ [5 kHz] 0.01 pb ⁻¹ [10%-str]	0.11 pb ⁻¹
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

sPHENIX asked to consider 20-28 week runs in 2024

- (Trans-)polarized p + p, p + A with
- streaming readout for
- 28 weeks in Run24
- But short Run24 would endanger the p + A
- data!

Gluon dynamics via y, HF TSSA

TSSA of prompt photon EMCal-based trigger

sPHENIX BUP2021 [sPH-TRG-2021-001]

TSSA of prompt $D^0 \rightarrow \pi K$ Enabled by streaming readout

Transversity via charged particle IFF

- Tremendous stat. enabled by both calorimetric jet trigger and streaming readout
- Need theory collaboration in the treatment of no-PID charged tracks & multi-dim binning
- Similarly: Sensitivity via Collins fragmentation function (hadron in jet measurements)

Summary

- Many Belle/Babar/BES3 TMD fragmentation related measurements available:
 - Unpolarized single hadrons wrt thrust axis
 - Collins asymmetries (kt dependent, kaons)
 - Polarizing L fragmentation
- More measurements on going for:
 - Other venues for unpolarized TMDs (opposite hemisphere dihadrons, hadron in jet)
 - Multi-dimensional extractions of Collins asymmetries
 - Other studies ongoing on the fragmentation of VMs and Ds
- study of quark/gluon dynamics at PHENIX/sPHENIX also closely related to TMD FFs

