Light Dark Matter Search with a Positron Beam at Jefferson Lab

Pietro Bisio

17/11/2021

Why Dark Matter?

- Astrophysical and cosmological measurements suggest the existence of Dark Matter.
- What is it composed of? How does it interact with ordinary matter?

The Dark Matter

- Experimental observations do not allow us to constrain the nature of Dark Matter particles.
- There are several theoretically well-grounded models.

- WIMPs
- Axion-Like Particles
- Dark Sector
- Sterile Neutrino

The Dark Photon

I focused on a Light Dark Matter theory (m_{χ} < 1 GeV) that introduces a new massive vector mediator called Dark Photon (A').

Model parameters:

- Masses m_{A'}, m_χ
- Coupling $\epsilon A' \leftrightarrow \gamma$

• Direct annihilation cross section (DM + DM \rightarrow SM + SM) : $\sigma v \propto \frac{y}{m^2}$,

$$y \equiv \alpha_D \epsilon^2 \left(\frac{m_{\chi}}{m_{A'}}\right)^4$$

• Dark Matter density measurement \rightarrow Estimation of $\langle \sigma v \rangle \rightarrow$ Relation between y and $m_{\chi} \rightarrow$ Expected curve in LDM parameter space

4/20

Accelerator-based experiments

Complementary approach to direct search: production of LDM particles through Dark Photon decay at accelerators.

- The high-energy experiments sensitivity is not significantly affected by the theory details.
- Experiments at accelerators can test multiple LDM models simultaneously.
- Controlled environment allows optimised studies in certain regions of the parameter space.

A' production via e^+ beam impinging on a fixed target

Resonant annihilation process

$$e^+e^-
ightarrow A'
ightarrow ar\chi \chi$$

- Most intense production channel
- The cross section presents a Breit-Wigner distribution

• Resonance energy:
$$E_R = \frac{m_{A'}^2}{2m_e}$$

Experimental technique

The produced A' decays into $\chi \bar{\chi}$ which escape from the target without interacting. \rightarrow **Missing energy measurement**.

Target/ECAL/HCAL

- Setup: positrons impinging on a thick active target. ECAL
- Thick target:
 - Electromagnetic shower
 - Secondary positrons (*E_{e⁺*} < *E_{Beam}*)
 - Large m_{A'} range exploration
- Active target:
 - Measure the energy deposited by each impinging positron (*E*_{Dep})
 - $E_{Miss} \equiv E_{Beam} E_{Dep}$
- Current: limited to reduce pile-up effects

Experimental technique

- Signal: events with high missing energy
 - Threshold $E_{MISS}^{CUT} \sim E_{Beam}/2$
- Backgrounds: events with high energy particles leaving the detector (μ, π, n, K_L)
 - External veto: HCAL

8/20

The JPOS-LDM experiment

JPOS: proposal for a physics program based on e^+ at JLAB.

JPOS-LDM:

- Beam: *e*⁺ 11 GeV
- Statistic: $1e^+/\mu s \times 1y = 10^{13}$ POT
- I performed a preliminary semi-analytical evaluation of the sensitivity, zero background

- **Objective:** feasibility study and setup optimization through Monte Carlo simulations of signal and background.
- \bullet Computational limitations. Long computation time makes it critical to simulate $\sim 10^{13}$ events.
 - I used **extrapolations** and **multi-step simulations** to estimate the expected number of background events.
- Simulation precision. The description of some phenomena within the code is approximate and may deviate from reality (high statistic, single event study).
 - **Comparative studies**. Comparison of different simulations to determine the experiment **critical parameters** that significantly affect the experimental sensitivity.

ECAL and signal efficiency

JPOS-LDM active thick target:

- $\bullet~\mbox{Fast}$ response time $\rightarrow~\mbox{Reduces}$ pile-up effects
- $\bullet\$ Large volume \rightarrow Full electromagnetic shower absorption
- $\bullet\,$ High density material \rightarrow Compact detector

- PbWO₄ crystals
 - Fast scintillation time ($\sim 20 \text{ ns}$)
 - High density (\sim 8.3 g/cm³)
 - Strong radiation hardness
- Signal events simulation \rightarrow ECAL geometry optimization

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Signal simulation: coupling/linearity

- I implemented the χ and A' particles and their production into the GEANT4 code.
- I chose best ε^2 parameter to perform signal simulations (cross section biasing).

- $\varepsilon^2 \lesssim 1$, linear region.
- $\varepsilon^2 \gg 1$, asymptotic region.
- I set $\varepsilon^2 = 1$ to perform the ECAL geometry study.

Signal simulation: ECAL geometry

Signal efficiency as a function of target geometry.

Length $\simeq 40X_0$, width $20 \times 20 \text{ cm}^2 \leftrightarrow \text{Signal efficiency} \sim 90\%$

Signal simulation: ECAL geometry

- Signal efficiency as a function of target geometry.
- Veto parameters moderately affects the results.

Length $\simeq 40X_0$, width $20 \times 20 \text{ cm}^2 \leftrightarrow \text{Signal efficiency} \sim 90\%$

HCAL and background rejection

The external veto detects energetic particles escaping from the target.

- High hermetic veto \rightarrow Detects long-lived neutral hadrons (n, K⁰_L) and penetrating particles (μ^{\pm} , π^{\pm}).
- $\bullet~\mbox{Fast}~\mbox{response}~\mbox{time} \rightarrow \mbox{Measurement}~\mbox{in coincidence}~\mbox{with ECAL}$
- \bullet Compact design \rightarrow Minimise total detector size.

- Sampling hadronic calorimeter
- Lead (Pb) + Plastic scintillator (Sc)

< ロト < 同ト < ヨト < ヨト

 $\bullet \mbox{ Background simulations} \rightarrow \mbox{ Veto design optimisation}$

Background simulations: muon pair photo-production

Dedicated simulation with cross section biasing. Collected statistic is equivalent to 10^{12} POT.

- $\bullet~\sim 1$ event every $10^6~POT$
- Muons mostly produced at forward angles

- Analytical calculation to evaluate the minimum number of veto layers required
- $\bullet~n\sim 12$ results in less than 1 background event for $10^{13}~\text{POT}$

イロト イポト イヨト イヨト

Background simulations: hadrons, "neutral events" - Sampling

- I selected most the critical background events:
 - *E_{Miss}* > 5 GeV
 - No charged particles leaving the ECAL with kinetic energy greater than 500 MeV
- I computed the average kinetic energy of the **neutral hadrons** (n, K_L) as a function of their multiplicity.

Background simulations: hadrons, "neutral events" - Inefficiency

- Only HCAL simulations → Veto inefficiency for a single neutral hadron
- Sampling → Total veto inefficiency, expected background events
- I studied different geometries (layers thickness) and measurement conditions (thresholds, number of hits) \rightarrow Critical parameters and setup optimisation

3hit 05MeV 3cmPb 2cmSc

(日) (同) (日) (日) (日)

Sensitivity (90% CL)

- 10¹³ POT
- $E_{Miss}^{CUT} = 5 \text{ GeV}$
- $\bullet\,$ Signal efficiency $\sim90\%$
- There is a set up in which expected background events = 0
 - Layers thickness: 3 cm Pb + 2 cm Sc
 - Hit HCAL: 1
 - Threshold Sc tile: 0.5 MeV

< ロト < 同ト < ヨト < ヨト

Sensitivity: systematic studies

E^{CUT}_{Miss}: 5 GeV
0, 10, 100 background events

E^{CUT}_{Miss}: 5 GeV, 7 GeV, 9 GeV

• • • • • • • • • • • • • •

• 0 background events

- LDM theories can be efficiently studied with experiments at accelerators.
- Thanks to the resonant annihilation process, positron-beam missing energy experiments play a unique role in this field.
- JPOS-LDM is the first experiment that searches for LDM through this technique in the multi-GeV energy range.
- The construction of the detector will necessarily proceed in stages (low statistics, modular detector a-la-NA64).
- I determined the critical parameters affecting experiment sensitivity.
- This work has **confirmed the JPOS preliminary results** and represents the **starting point** for a possible future implementation of the experiment.

イロト 不得 トイヨト イヨト 二日