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Why Dark Matter?

@ Astrophysical and cosmological measurements suggest the existence of Dark
Matter.

@ What is it composed of? How does it interact with ordinary matter?
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The Dark Matter

@ Experimental observations do not allow us to constrain the nature of Dark Matter

particles.
@ There are several theoretically well-grounded models.

@ WIMPs

@ Axion-Like Particles
@ Dark Sector

@ Sterile Neutrino

Axion-like Particles
‘made by Tim M Tait

Little Higgs
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The Dark Photon

| focused on a Light Dark Matter theory (m, < 1 GeV) that introduces a new massive
vector mediator called Dark Photon (A').
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Accelerator-based experiments

Complementary approach to direct search: production of LDM particles through Dark

Photon decay at accelerators.

@ The high-energy experiments
sensitivity is not significantly affected
by the theory details.

@ Experiments at accelerators can test
multiple LDM models simultaneously.

@ Controlled environment allows
optimised studies in certain regions of
the parameter space.
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A’ production via e™ beam impinging on a fixed target

Resonant annihilation process
ete” - A — xx
@ Most intense production channel
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Experimental technique

The produced A’ decays into x ¥ which escape from the target without interacting.

— Missing energy measurement.

etle [T

Ei=Ep '-—-I|
Tagger

Invisible

Target/ECAL/HCAL

@ Setup: positrons impinging on a thick
active target. ECAL
@ Thick target:
o Electromagnetic shower
e Secondary positrons (Eg+ < Egeam)
e Large my range exploration
@ Active target:
@ Measure the energy deposited by
each impinging positron (Epep)
® Euiss = Egeam — EDep
@ Current: limited to reduce pile-up
effects
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Experimental technique

e Signal: events with high missing
energy

o Threshold EGZL ~ Egeam/2

e Backgrounds: events with high
energy particles leaving the detector
(n, T, n, KL

e External veto: HCAL

DA
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The JPOS-LDM experiment

JPOS-LDM:
@ Beam: e* 11 GeV
JPOS: proposal for a physics ® Statistic: 1e*/pus x 1y = 1012 POT

program based on et at JLAB. @ | performed a preliminary semi-analytical
evaluation of the sensitivity, zero background
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Goal of the analysis

@ Objective: feasibility study and setup optimization through Monte Carlo
simulations of signal and background.
@ Computational limitations. Long computation time makes it critical to simulate
~ 103 events.
o | used extrapolations and multi-step simulations to estimate the expected
number of background events.
@ Simulation precision. The description of some phenomena within the code is
approximate and may deviate from reality (high statistic, single event study).
e Comparative studies. Comparison of different simulations to determine the
experiment critical parameters that significantly affect the experimental
sensitivity.

10/20



ECAL and signal efficiency

JPOS-LDM active thick target:
@ Fast response time — Reduces pile-up effects
@ Large volume — Full electromagnetic shower absorption
@ High density material — Compact detector

@ PbWOy, crystals
o Fast scintillation time (~ 20 ns)
e High density (~ 8.3 g/cm®)
@ Strong radiation hardness
@ Signal events simulation — ECAL
geometry optimization
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Signal simulation: coupling/linearity

@ | implemented the x and A’ particles and their production into the GEANT4 code.
@ | chose best €2 parameter to perform signal simulations (cross section biasing).

DM events
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@ 2 <1, linear region.
@ 2> 1, asymptotic region.

@ |sete? = 1 to perform the
ECAL geometry study.
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Signal simulation: ECAL geometry

@ Signal efficiency as a function of target geometry.

ECAL: width 20cm HCAL: 3cmPb 2cmSc 3cmPb 2cmSc
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Signal simulation: ECAL geometry

@ Signal efficiency as a function of target geometry.
@ Veto parameters moderately affects the results.
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HCAL and background rejection

The external veto detects energetic particles escaping from the target.
@ High hermetic veto — Detects long-lived neutral hadrons (n, KE) and penetrating
particles (u*, ).
@ Fast response time — Measurement in coincidence with ECAL
@ Compact design — Minimise total detector size.

@ Sampling hadronic calorimeter
@ Lead (Pb) + Plastic scintillator (Sc)

@ Background simulations — Veto
design optimisation
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Background simulations: muon pair photo-production

Dedicated simulation with cross section biasing.
Collected statistic is equivalent to 1012 POT.
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@ Analytical calculation to evaluate the
minimum number of veto layers required

@ n ~ 12 results in less than 1 background
event for 103 POT

@ ~ 1 event every 10% POT

@ Muons mostly produced at
forward angles
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Background simulations: hadrons, "neutral events” - Sampling

@ | selected most the critical background events:
o Episs > 5 GeV
o No charged particles leaving the ECAL with kinetic energy greater than 500 MeV
@ | computed the average kinetic energy of the neutral hadrons (n, K;) as a
function of their multiplicity.
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Background simulations: hadrons, "neutral events” - Inefficiency

@ Only HCAL simulations — Veto inefficiency for a single neutral hadron
@ Sampling — Total veto inefficiency, expected background events

@ | studied different geometries (layers thickness) and measurement conditions
(thresholds, number of hits) — Critical parameters and setup optimisation
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Sensitivity (90% CL)

e 10" POT
CUT _
@ Epes =5GeV

@ Signal efficiency ~ 90%
@ There is a set up in which expected
background events = 0
o Layers thickness:
3cmPb+2cm Sc
o Hit HCAL: 1
@ Threshold Sc tile: 0.5 MeV
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Sensitivity: systematic studies

CUuT.
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Conclusions

@ LDM theories can be efficiently studied with experiments at accelerators.

@ Thanks to the resonant annihilation process, positron-beam missing energy
experiments play a unique role in this field.

@ JPOS-LDM is the first experiment that searches for LDM through this technique
in the multi-GeV energy range.

@ The construction of the detector will necessarily proceed in stages (low statistics,
modular detector a-la-NA64).

@ | determined the critical parameters affecting experiment sensitivity.

@ This work has confirmed the JPOS preliminary results and represents the
starting point for a possible future implementation of the experiment.
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