BDX-Mini data analysis

Marco Spreafico

On behalf of BDX Collaboration

11 - 17 - 2021

BDX-Mini measurement

Measurement took place in spring-summer 2020

- \rightarrow collected $\sim 3 \times 10^{21}$ EOT (30% BDX)
- \rightarrow used 2.176 GeV beam
- ightarrow beam current up to 150 μ A
- → beam-on and beam-of measurements alternate
 - \rightarrow beam on time $\sim 50\%$
 - ightarrow beam-off data for cosmic background study

→ special 10 GeV-beam run for calibration purpose

Blind analysis:

 \rightarrow all studies performed using MC and beam-off data

- ECal calibration
- ② detector response stability
 - ightarrow ECal calibration stability and veto response stability studied with cosmic muons
- background study
 - ightarrow cosmic background rejected requiring anti-coincidence with the veto
 - ightarrow neutrino background simulated with MC (same as BDX) ightarrow negligible
- sensitivity optimization
 - → maximizing signal and minimizing background
- unblinding
 - ightarrow selection cuts applied to beam-on data

1) ECal calibration

ECal calibrated using muons produced by 10 GeV beam

- calibration constants evaluated comparing data to MC
- ullet we found out that the detector was rotated ($\sim 20^\circ$)

Blind analysis:

ightarrow all studies performed using MC and beam-off data

- ECal calibration
- detector response stability
 - ightarrow ECal calibration stability and veto response stability studied with cosmic muons
- background study
 - ightarrow cosmic background rejected requiring anti-coincidence with the veto
 - ightarrow neutrino background simulated with MC (same as BDX) ightarrow negligible
- sensitivity optimization
 - ightarrow maximizing signal and minimizing background
- unblinding
 - ightarrow selection cuts applied to beam-on data

2.1) ECal calibration stability

ECal calibration constants stability monitored using cosmic muons

- → Muon trajectories with a clear Landau peak are chosen
- → MC simulation used to perform a template fit of data
- \rightarrow calibration constants stable within 10%

2) Veto response stability

Veto stability studied with cosmic muons (\rightarrow only beam-off data used)

- \rightarrow selected muons traversing the detector
- → measured response for each component (caps, IV-O, OV-C)
- ightarrow response stable within $\sim 1\%$

Blind analysis:

 \rightarrow all studies performed using MC and beam-off data

- ECal calibration
- detector response stability
 - ightarrow ECal calibration stability and veto response stability studied with cosmic muons
- background study
 - ightarrow cosmic background rejected requiring anti-coincidence with the veto
 - ightarrow neutrino background simulated with MC (same as BDX) ightarrow negligible
- sensitivity optimization
 - ightarrow maximizing signal and minimizing background
- unblinding
 - ightarrow selection cuts applied to beam-on data

3) Cosmic background study

Anti-coincidence with the veto used to reject most cosmic background events

- → few events remain with energy in ECal and no activity in the veto
- → main background

Number of cosmic background events in beam-on data evaluated from beam-off data

→ measurement contain beam-on and beam-off data

Problems:

- long term stability of the cosmic background
- short term stability (subsequent beam-on and beam-off measurements)

Cosmic background study

Long term cosmic background stability

- ullet we studied vertical muons (\Longrightarrow different topology with respect to DM)
- only beam-off data used

 \rightarrow there are non negligible fluctuations in the background

Cosmic background study

Short term cosmic background stability

ullet we used also beam on-data (vertical muons \Longrightarrow different topology with respect to DM)

- ightarrow cosmic background stable over short $(\sim$ min) periods of time
- → fluctuations are negligible when considering all data together

Blind analysis:

ightarrow all studies performed using MC and beam-off data

- ECal calibration
- detector response stability
 - ightarrow ECal calibration stability and veto response stability studied with cosmic muons
- background study
 - ightarrow cosmic background rejected requiring anti-coincidence with the veto
 - ightarrow neutrino background simulated with MC (same as BDX) ightarrow negligible
- sensitivity optimization
 - → maximizing signal and minimizing background
- unblinding
 - ightarrow selection cuts applied to beam-on data

4) Sensitivity optimization

Upper limit on number of signal events evaluated with one sided test statistic:

$$q(S) = \begin{cases} -2\log\lambda(S) & S > \hat{S} \\ 0 & S < \hat{S} \end{cases} \qquad \lambda(S) = \frac{\mathscr{L}(S, \hat{B})}{\mathscr{L}(\hat{S}, \hat{B})}$$

$$\mathscr{L}(n_{on}, n_{off}; S, B_c, B_{\nu}) = \operatorname{Pois}(n_{on}, \mu S + B_{\nu} + B_c) \operatorname{Pois}(n_{off}, \tau B_c) P(\mu; \mu_0 = 1, \sigma_{\mu}).$$

Upper limit on LDM parameters evaluated using MC simulations to evaluate $\mathcal{S}(\epsilon)$

- $Pois(n_{on}, \mu S + B_{\nu} + B_{c})$: beam-on data \rightarrow signal+background
- $Pois(n_{off}, \tau B_c)$: beam-off data \rightarrow only cosmic background
- $P(\mu; \mu_0 = 1, \sigma_{\mu})$: includes MC simulations systematic uncertainties

4.1) Systematic uncertainties

 $\mu = signal scale$

 \rightarrow accounts for uncertainties in MC simulations used to relate S to ϵ

Systematic uncertainties considered:

ECal calibration	$\sigma_E/E = \pm \ 10\% \ (\pm \ 20\%)$	$\sigma_{E,\mu} = \pm 0.14$
Detector position	$\sigma_z=\pm$ 5 cm	$\sigma_{z,\mu} = \pm 0.07$
Detector rotation	$\sigma_{ heta}=\pm$ 5 $^{\circ}$	$\sigma_{ heta,\mu}=\pm 0.025$
Veto threshold	$\sigma_{th}/Q_{th}=\pm~0.5$	$\sigma_{th,\mu} = \pm 0.06$
DM interaction	Requires different MC	$\sigma_{DM,\mu} = \pm 0.05$

⇒ total uncertainty:

$$\sigma_{\mu} = \sqrt{\sum_{\mathsf{sys}} \sigma_{\mathsf{sys}}^2} = 0.18$$

4.2) Sensitivity optimization

Idea: improve reach with respect to the 0 background condition

- → maximizing signal while minimizing background
- \rightarrow reference = exclusion limit on y
- ightarrow optimization performed on events passing the anti-coincidence condition
 - ightarrow study performed using MC and beam-off data

4.2) Sensitivity optimization

Idea: improve reach with respect to the 0 background condition

- → maximizing signal while minimizing background
- \rightarrow reference = exclusion limit on y
- ightarrow optimization performed on events passing the anti-coincidence condition
 - ightarrow study performed using MC and beam-off data

Cuts tested:

- Total energy
- Hit multiplicity
- Most energetic hit position
- EM shower direction
- Energy outside seed

Maximum sensitivity achieved with cut on total energy

 \rightarrow cuts used: anti-coincidence with veto and $E_{tot} > 50$ MeV

Blind analysis:

 \rightarrow all studies performed using MC and beam-off data

- ECal calibration
- ② detector response stability
 - ightarrow ECal calibration stability and veto response stability studied with cosmic muons
- background study
 - ightarrow cosmic background rejected requiring anti-coincidence with the veto
 - ightarrow neutrino background simulated with MC (same as BDX) ightarrow negligible
- sensitivity optimization
 - → maximizing signal and minimizing background
- unblinding
 - ightarrow selection cuts applied to beam-on data

5) Unblinding

Unblinding \implies number of beam-on events evaluated

- $R_{on} = (3.87 \pm 0.10)10^{-4} \text{Hz}$
- $R_{off} = (3.86 \pm 0.10)10^{-4} \text{Hz}$
- ⇒ no data excess
- \Rightarrow upper limit on y

5) Unblinding

Unblinding ⇒ number of beam-on events evaluated

•
$$R_{on} = (3.87 \pm 0.10)10^{-4} \text{Hz}$$

•
$$R_{off} = (3.86 \pm 0.10)10^{-4} \text{Hz}$$

- ⇒ no data excess
- \Rightarrow upper limit on y

No new region excluded

- → excellent sensitivity in the bump due to resonant A' production
- → low sensitivity for higher masses

- → exclusion curve touches NA64 exclusion limits
 - → reach similar to flagship experiments!

Conclusions

- BDX-Mini is the first modern beam-dump experiment optimized for LDM searches
- Data taking in spring-summer 2020
 - accumulated 3×10^{21} EOT in few months

- analysis optimized for LDM searches
 - ightarrow sensitivity optimization shows that the 0 background condition do not achieve the best reach
 - ightarrow a similar approach can be implemented in BDX analysis

reach similar to flagship experiments (NA64, E137)

Backup Slides

Waveform analysis

(b) Example of noise

Filtering algorithm based on cross-correlation

- with sine function
- with signal functional form
- \rightarrow 100% efficiency on training dataset

