

A relocatable lander to explore Titan's prebiotic chemistry and habitability

Flights of Exploration on an Alien Moon: Dragonfly Mission Reliability

October 2022

Clayton Smith, PhD APL Space Sector Reliability Lead

Clay.Smith@jhuapl.edu 240-228-3130

Background

- Working at Johns Hopkins University Applied Physics Laboratory since 1991
- Reliability lead for APL's Space Exploration Sector
- Reliability engineering for many missions
- Probabilistic Risk methods to various sponsor problems and studies
 - Interstellar Probe Study (50 year mission)
 - Missile production issues
- Research interests
 - Optimized risk bases testing
 - Long duration missions (multiple decade missions)
 - Interplay between Qualification testing and Reliability

Johns Hopkins University Applied Physics Laboratory

- Research division of Johns Hopkins University
- Nation's largest University Affiliated Research Center
 - ~8,000 staff
- Sponsors include:
 - Department of Defense
 - NASA
 - Department of Homeland Security
 - Intelligence Community
- Our purpose is make *critical contributions to critical challenges*

Titan's unique environment

- Largest of Saturn's 62 moons
- Diameter: 5,150 km (3,193 miles)
- Surface gravity: 1.35 m/s² (0.14 g)
 - 14% of gravity at Earth's surface
 - 83% of gravity at Moon's surface
- Surface temperature: 94 K (–179°C, –290°F)
 - Bedrock composition: water ice
 - Atmospheric composition: nitrogen, few % methane
- Surface pressure: 1.5 bar
 - 1.5x pressure at Earth's surface
- Deep interior ocean of liquid water

Voyager 2, 23 August 1981

Lander with aerial mobility enables wide-ranging in situ exploration – key for science measurements

Cassini revealed where to look for answers

- Diverse surface materials and environments
- Earth-like variety of geologic processes
- Science challenge is to get instruments to multiple sites to sample materials and measure composition

Heavier-than-air mobility highly efficient at Titan

- Atmospheric density 4x higher than Earth's reduces wing/rotor area required for lift
- Gravity 1/7th of Earth's → reduces power required

Science goals and payload focus on chemical inventory and opportunities for materials to interact

- DragonCam: Camera Suite (MSSS, APL)
- DraGMet: Geophysics & Meteorology Package (APL, JAXALunar-A seismometer)
 - Needed continuously on the surface including hybernation
- DraGNS: Gamma-ray Neutron Spectrometer (APL, LLNL, GSFC, Schlumberger PNG)
- DrACO: Drill for Acquisition of Complex Organics (Honeybee Robotics)
- DraMS: Mass Spectrometer (GSFC, CNES)
- DrEAM (on aeroshell): Entry Science Investigation (NASA/Ames, DLR, AMA Inc.)
 - Operates only during EDL

Minimum Mission Success Criteria

- For mission success, the following minimum criteria must be met:
 - Land on Titan and establish a communication link
 - Characterize the terrain near the lander with multi-scale imaging to identify local geological features
 - Monitor meteorological conditions over a full diurnal cycle (1 Tsol) and measure surface properties at the landing site
 - Perform compositional measurements of Titan's surface materials

- Launch is scheduled in 2027 with arrival by 2034 (6+ years transit time)
- Nominal mission duration on the surface is 3.3 years, with a concept of operations to travel ~100 km and explore a few dozen landing sites

Dragonfly's Efficient Implementation Consists of Four Distinct Mission Phases

Flight System Elements

Note: Images above are used to delineate elements and do not reflect current configuration

Rotorcraft Lander Flight configuration with HGA stowed

NOT a typical Mars stack-up

- Cruise Stage is not independent, as there is a common fluid loop for thermal, power comes from Lander, and "brains" of the entire vehicle lives in Lander
- Cruise stage provides functions needed for travel between Earth and Titan
 - Propulsion, guidance & control, (attitude control) and telecommunications
- EDL Assembly provides functions needed for safe descent through Titan's atmosphere
 - Heatshield, backshell, parachute system, separation systems, and LGA
- (Rotorcraft) Lander provides functions needed for surface exploration at Titan
 - Octocopter for mobility (flight) at Titan
 - Science instruments for studying Titan's surface and atmosphere

Entry, Descent, and Landing (EDL) at Titan

Wake up avionics, begin telemetry transmission; E-250 min]
Turn to entry, spin up to 2 rpm; E-25 min	Entry
Vent cruise thermal loop; E-20 min	Preparation
Cruise stage separation; <i>h</i> =5074 km; E-600 sec	
Entry interface, <i>h</i> =1270 km, <i>V</i> = 7.33 km/ s, g = -47.8°; E-0 sec	
Peak heating <i>h</i> =252 km, <i>V</i> =5.77 km/ s, <i>q</i> ~242 W/ cm ² ; E+228 sec	Ballistic
Peak deceleration, <i>h</i> =222 km, <i>V</i> =4.55 km/ s, decel.=10 g; E+242 sec	
Drogue deployment, $h=146$ km, $M=1.5$; E+369 sec	
Descent under drogue parachute	
Main parachute deployed by drogue, $h=4$ km, $V=6.7$ m/s, E+96 min	Descent on
Heatshield separation, <i>h</i> =3.8 km; E+97 min	Parachute
Lander Pose, <i>h</i> =3.6 km, E+98 min	
🗢 🚗 Activatelidar	
Lander release, <i>h</i> =1.2 km, <i>V</i> =2.7 <i>m</i> /s, E+112 min	Powered Elight
Powered flight Landing, h=0 km	& Landing

Initial Landing Site Provides Access To Multiple Geologic Settings

- Dunes
- Interdunes
- Impact crater deposits
- Access to sample organic sediments and materials with a waterice component

Organic Sand Interdune Materials Ejecta Blanket Impact Melt

Landed Configuration and Payload Accommodation

- Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) power
 - Charge battery used for flight and science activities
 - Waste heat maintains nominal thermal environment in lander
- Direct-to-Earth (DTE) communication
 - High-gain Antenna (HGA) articulation used to target cameras to build up panoramas of surrounding terrain
- Science measurements on surface and in flight
 - Aerial imaging
 - Atmospheric profiles

Mission Timeline and Exploration Strategy

- "Leapfrog" exploration strategy to scout future landing sites
- 16-day Titan Tsols \rightarrow relaxed operations schedule
 - Most of time is spent on the surface making science measurements

- At JHU/APL, Reliability Engineering (RE) is a system engineering function
 - Reliability is the probability that an item performs its intended function for a specified time interval under stated conditions
 - System reliability is achieved through the creation of a robust design and the discovery, elimination, and avoidance of defects through a rigorous assurance process consisting of a set of well-defined closed-loop activities performed over the life of a flight project
- "Do reliability engineering"
 - There is no reliability number requirement, NASA focuses on reliability practices and assessments
 - Dragonfly Reliability Requirements are defined in the project level documentation and those requirements are referenced in the Reliability Plan

- Dragonfly is a Class B mission
 - NPR 8705.4A "Risk Classification for NASA Payloads"
- FMEA/CIL: At black box (or circuit block diagram) level as a minimum; Scope further refined by Project needs
 - Functional FMEAs, Interface FMEAs, GSE FMEAs
 - Produced to support Fault Management design team
- Tailored PRA: "Limited Scope" focusing on mission-related end-states of specific design decisions and trade studies
 - Fault Tree Analysis (FTAs) developed as part of PRA

- EEE Parts Selection process Further defined by SMEs and Project level decision makers
 - Per the Dragonfly Parts Control Plan (PCP), Dragonfly is a Level 2 parts program
- Worst Case Analysis (WCA)
 - Developed by the design teams for all parts and circuits that have a severity category of 1 or 2
 - A two-step process will be implemented: First, there will be a screening process consistent with an Extreme Value Analysis, and then a Monte-Carlo approach where the EVA shows no margin
 - WCA does not apply to COTS hardware

- Additional reliability analyses
 - Parts Stress Analysis
 - Reliability Analysis of Test Data
 - Identify Limited Life Items and Limited Shelf Life Material
- Expertise for a given assessment rests across multiple groups
 - Design Lead, Components Engineer, Reliability Engineer, Radiation Engineer, System Mission Assurance Manager

Probabilistic Risk Assessment (PRA)

Watch Items

- Single point failures items (including Common Cause Failures)
 - Many normal items (structure, tanks, etc..)
 - Instruments needed for ground operations
 - Trades between mass and redundancy
- Long cruise duration
- Entry, decent, and landing
 - Many events need to occur in succession
- Environmental uncertainty
 - Cruise is very well understood
 - Atmospheric uncertainty affects on EDL
 - Surface environmental affects of instruments, flight and communications

DRAGØNFLY

http://dragonfly.jhuapl.edu