

PLCverif: a tool to formally verify critical PLC programs

B. Fernández Adiego*, I. D. Lopez Miguel, M. Bres, J-C. Tournier and E. Blanco Viñuela *borja.fernandez.adiego@cern.ch

Software defects can be fatal and extremely costly

Errors in the design, specification and software implementation are very common

- In the **particle accelerators domain**, a software failure may have very serious consequences:
 - Safety of the personnel (risks related to radiation, electrical systems, cryogenics, etc.)
 - High cost (damage of machines and industrial facilities **or unavailability** of particle accelerator)

• E.g. Ariane 5 accident (more than 500 million US\$)

In industry, the most common software verification techniques are peer reviews and testing. But they have some limitations (e.g. how to catch corner cases? all combinations of the program cannot be tested).

How to guarantee that critical software is compliant with the functional specifications? Formal methods

- Formal methods are techniques based on mathematics and formal logic (e.g. petri nets, automata, temporal logic, B-method, etc.)
- They can be used for specification and modelling, simulation, formal verification (e.g. model checking), etc.
- They provide more effective verification techniques (more combinations are explored)
- They are **popular** techniques **in critical industries** (e.g. aerospace, aircraft and railway industries)

PV PLCverif: Model checking for PLC programs

What is model checking? given a global model of the system and a formal property, the model checking algorithm explores exhaustively that the model meets the property **PLCverif user interface**

PLCverif internals

(inputs)

📄 Demo.scl 🔀

Intermediate model generation

PLCverif user interface (results)

PLCverif relevant projects

CERN SPS-PPS project: B. Fernandez et al. "Applying model checking to highly-configurable safety critical software: The SPS-PPS

PLC program" in Proc. of the 18th ICALEPCS https://accelconf.web.cern.ch/icalepcs2021/papers/wepv042.pdf

- **CERN SM18 project:** B. Fernandez et al. "Cause-and-Effect Matrix specifications for safety critical systems at CERN" in Proc. of the 17th ICALEPCS https://accelconf.web.cern.ch/icalepcs2019/papers/mopha041.pdf
- **ITER:** *B. Fernandez et al. "Applying model checking to critical PLC applications: An ITER case study" in Proc. of the 17th ICALEPCS* \bullet https://accelconf.web.cern.ch/icalepcs2017/papers/thpha161.pdf
- **GSI:** collaboration to formally verify safety critical PLC programs of the FAIR particle accelerator

CERN Beams Department Industrial Controls Systems Group (ICS)