

Sustainable Implementation of Machine Learning for Particle Accelerators

Tia Miceli (Accelerator Al Coordinator) Accelerator Reliability Workshop 2022 10/18/2022

Sustainable Implementation of Machine Learning for Particle Accelerators

Tia Miceli (Accelerator Al Coordinator) Accelerator Reliability Workshop 2022 10/18/2022

... or **Best practices from Industry**; where "Industry" := any business that uses ML in automating processes

Why you need a sustainable way of developing, deploying, monitoring, and servicing ML applications (for accelerators)

 The only person that knew anything about application / model / code leaves

• The "reproducibility problem" in deep learning

• Life-cycle handling: is it still doing the right thing? If not, what does an accelerator operator do at 3 A.M.?

Why you need a sustainable way of developing, deploying, monitoring, and servicing ML applications (for accelerators)

 The only person that knew anything about application / model / code leaves

• The "reproducibility problem" in deep learning

• Life-cycle handling: is it still doing the right thing? If not, what does an accelerator operator do at 3 A.M.?

 \Rightarrow need self-documenting procedures

\rightarrow need advanced and automated "bookkeeping"

 \Rightarrow need to automate common updates

"The Reproducibility Problem" (in Al / ML)

• "I am able to train a model once, but I / someone else can't reproduce the same model weights again."

	Issue			
Typical	Weights are a little different	Some va		
	Weights are so different that model predictions are very different.	Training		
Tricky				
•				

Mitigating Best Practice

riation expected if training in parallel and on variety of hardware. Check within tolerance.

is getting stuck in local minima. A variety of training schema and hyper parameters and optimizers should be tried.

"The Reproducibility Problem" (in AI / ML)

• "I am able to train a model once, but I / someone else can't reproduce the same model weights again."

	Issue	
Typical	Weights are a little different	Some va
	Weights are so different that model predictions are very different.	Training
Tricky	Human mishandling, hard to detect	As <u>moo</u> per
	Different datasets give different weights	This is version co
	Works for me, but not for you	Environn

Mitigating Best Practice

riation expected if training in parallel and on variety of hardware. Check within tolerance.

is getting stuck in local minima. A variety of training schema and hyper parameters and optimizers should be tried.

del's code is version controlled, also version control model's formance so that performance results don't get mixed up.

s to be expected within some tolerance. Just as model code is ontrolled, train/val/test datasets should be version controlled.

ment needs to be version controlled! (Packages and versions)

Machine Learning Operations (MLOps)

- Deploying an AI/ML capability for operations requires more than data science (i.e. data discovery, labeling, and AI/ML model building).
- Deploying an AI/ML capability requires further <u>engineering</u> & <u>stewardship</u>: - Live-streaming / live-batched-streaming data ingestion and transformation

 - Model inference serving
 - Prediction streaming
 - Logging
 - Monitoring / triggering alarms
 - Automating actions

★ before describing the MLOps infrastructure, lets describe what user interactions with it should look like

Data Management

- 1. Request a data filter from accelerator data stream.
- 2. Decide on a definition of a dataset train / val / test and version control it (VC).
- 3. Label data, VC again.

Model Development

Data Management

- 1. Request a data filter from accelerator data stream.
- 2. Decide on a definition of a dataset train / val / test and version control it (VC).
- 3. Label data, VC again.

Model Development

- 4. Choose metric(s) to optimize.
 - 5. Prep / transform data of 2/3. VC code. (Optionally VC derivative dataset.)
 - 6. Model trials (VC) Model choice
 - Train
 - Tune
 - Test result (VC)

7. Save all model assets

Data Management

- 1. Request a data filter from accelerator data stream.
- 2. Decide on a definition of a dataset train / val / test and version control it (VC).
- 3. Label data, VC again.

Model Development

- 4. Choose metric(s) to optimize.
 - 5. Prep / transform data of 2/3. VC code. (Optionally VC derivative dataset.)
 - 6. Model trials (VC) Model choice
 - Train
 - Tune
 - Test result (VC)

7. Save all model assets

8. Prepare transforms for live data to model.

9. Choose thresholds for monitoring:

- Live input data
- Prediction / performance

10. Enter model registry

11.Test deployment

System Operations

Data Management

- 1. Request a data filter from accelerator data stream.
- 2. Decide on a definition of a dataset train / val / test and version control it (VC).
- 3. Label data, VC again.

Model Development

- 4. Choose metric(s) to optimize.
 - 5. Prep / transform data of 2/3. VC code. (Optionally VC derivative dataset.)
 - 6. Model trials (VC) Model choice
 - Train
 - Tune
 - Test result (VC)

7. Save all model assets

Operations Dev.

8. Prepare transforms for live data to model.

9. Choose thresholds for monitoring:

- Live input data
- Prediction / performance

10. Enter model registry

11.Test deployment

System Operations

12. Periodic model registry inventory

13. Respond to alarms:

 Adjust thresholds (go to 9 onward), can be automated.

 Adjust model weights (go to 1-3, 6,7, 9) onward), can be automated (RL).

• Retire & replace

Key pieces of Continuous Integration / Continuous Delivery to include

- Use a modern code version control system
- Enforce strict permissions on merging
- Enforce unit tests of small functions before merging
- Enforce end-to-end (integration) tests before merging
- Optionally enforce coding style choices

• Shared compute CPU & GPU

t	Operations Dev.	System Operation

- Container environments
- Shared libraries and best practices \bullet

- Advanced version control (strict permissions, integration tests, access to GPU if needed)
- Shared compute CPU & GPU

- Container environments
- Shared libraries and best practices

Data Management

- Standardized accel. data logger / filter.
- Standardized format.
- Dataset Management <u>System</u>
 - Versioning
 - Track derivative datasets
 - Metadata

Model Development

- Use Common Tools \bullet
- Model Development <u>System</u>
 - ~MLFlow / hyper p. tune
 - VC: model with references to env., data, results

- Advanced version control (strict permissions, integration tests, access to GPU if needed)
- Shared compute CPU & GPU

Data Management

- Standardized accel. data logger / filter.
- Standardized format. lacksquare
- Dataset Management <u>System</u>
 - Versioning
 - Track derivative datasets
 - Metadata

Model Development

- Use Common Tools \bullet
- Model Development <u>System</u>
 - ~MLFlow / hyper p. tune
 - VC: model with references to env., data, results

- Advanced version control (strict permissions, integration tests, access to GPU if needed)
- Shared compute CPU & GPU

Data Management

- Standardized accel. data logger / filter.
- Standardized format.
- Dataset Management <u>System</u>
 - Versioning
 - Track derivative datasets
 - Metadata

Model Development

- Use Common Tools
- Model Development <u>System</u>
 - ~MLFlow / hyper p. tune
 - VC: model with references to env., data, results

- Advanced version control (strict permissions, integration tests, access to GPU if needed)
- Shared compute CPU & GPU

Fermilab is on this path!

- We've secured shared compute at our Elastic Analysis Facility
 - Jupyter Hub on Kubernetes with managed environments - ~225 CPU and 1.1 TB memory + 45 TB storage (for now)
- We've secured an on-premise GitHub install, soon to be GitHub Cloud
- We've secured a modern 😉 content management system (Confluence Cloud)
- These were the low hanging fruit, the rest requires more requirements gathering and R&D, so we are collaborating with Fermilab's ACORN project.

Confluence

Accelerator Controls Operations Research Network (ACORN)

- ACORN is a DOE O413 project that will modernize Fermilab's accelerator control system by replacing obsolete hardware and software and will integrate the new control system with our new SRF linac* and neutrino beamline**.
- CD-0 Aug 28, 2020
- CD-1 projected Q2 2024

Part of **modernization** is to enable AI / ML for accelerator controls!

* Proton Improvement Plan II (<u>PIP-II</u>)
** Long Baseline Neutrino Facility beamline (<u>LBNF</u>)

ACORN R&D projects underway that will help enable AI / ML

- Data Logger: What data is chosen? (All please!) How long does the data last? How much data is logged?
- Curated Data Storage: How does data get stored? How does data get transformed to formats needed in different contexts?

⇒ These will help create a strong base for MLOps: Data Management

Data Lake Concept: All data stored in native format and transformed on demand

Conclusion

- MLOps best practices ensure accelerator controls AI / ML remains sustainable.
- With Fermilab's ACORN project we are currently gathering <u>requirements</u> and <u>doing R&D</u> to define our optimal MLOps infrastructure.
- I would love to learn about systems in place at other accelerators! Please come chat with me!
 - miceli@fnal.gov

Tia Miceli, Fermilab Accelerator Controls AI Coordinator a.k.a. "Top Cat Herder in the Midwest!"

Special thanks to ARW2022 and to Fermilab's ACORN Project!

