

EUROPEAN SPALLATION SOURCE

Hardware integrity assessment of the Fast Beam Interlock System (FBIS) at ESS

PRESENTED BY DR. JOANNA WENG (ZHAW) AND JOHANNES GUSTAFSSON (ESS)

CO-AUTHORS: SILVAN FLURI, PATRICK PROBST, MARTIN REJZEK, CHRISTIAN SOMMER (ZHAW)

- 1 Introduction ESS and ZHAW
- 2 Machine Protection at ESS
- 3 FBIS Reliability Analysis
- 4 ESS integration of FBIS reliability analysis
- 5 Benefits of detailed reliability studies

Introduction ESS and ZHAW

1

European Spallation Source

ESS aims to be brightest Neutron Source worldwide

Commissioning of first 50m of the proton accelerator started in 2021

Beam on Target is planned for end of 2024

User programme starts in 2025

Decommissioning in 2065

ESS Proton Accelerator

Proton beam energy:2 GeVPulse length:2.86 msPulse repetition rate:14 HzAverage beam power:5 MWAverage beam current:62.5 mA

ESS Target Station

Rotating Tungsten target

36 sectors with cooling channels (Helium)

Synchronized to 14 Hz proton beam pulses

Target Monolith r=6m, h=10m

Instrument Suite

15 Instruments in Design and Construction

- 15 instruments in detailed design
- Most instruments are a collaboration between scientists from the member states

Timeline for first science to be carried out in 2027 on the first opened instruments

Instrument Suite

15 Instruments in Design and Construction

ESS – a Pan-European Project

ESS has 13 member states and more than 40 EU partner institutes

Aarhus University Atomki - Institute for Nuclear Research **Bergen University CEA Saclay, Paris** Centre for Energy Research, Budapest Centre for Nuclear Research, Poland, (NCBJ) CNR, Rome **CNRS Orsay, Paris** Cockcroft Institute, Daresbury Elettra – Sincrotrone Trieste ESS Bilbao Forschungszentrum Jülich Helmholtz-Zentrum Geesthacht Huddersfield University **IFJ PAN, Krakow** INFN, Catania **INFN**, Legnaro INFN, Milan Institute for Energy Research (IFE)

ISIS - Rutherford-Appleton Laboratory, Oxford Laboratoire Léon Brilouin (LLB) Lund University Nuclear Physics Institute of the ASCR **Oslo University** Paul Scherrer Institute (PSI) Polish Electronic Group (PEG) **Roskilde University** Tallinn Technical University Technical University of Denmark (DTU) Technical University Munich (TUM) Science and Technology Facilities Council University of Copenhagen (KU) University of Tartu Uppsala University Wigner Research Centre for Physics Wroclaw University of Technology Warsaw University of Technology Zurich University of Applied Sciences (ZHAW)

Zürcher Hochschule für Angewandte Wissenschafter

ZHAW introduction

 Zurich University for Applied Sciences (ZHAW) School of Engineering Switzerland

• Applied R&D projects with industry partners

Safety Critical Systems Lab @ZHAW

- Successful collaboration with ESS since 2016
- Build Fast Beam Interlock System (FBIS) in our lab
- Developed verification for FBIS (Hardware in the Loop simulation)
- Performed FBIS hardware integrity assessment
- Support ESS Machine Protection (MP) integrity assessment
- Functional safety assessment of ESS Personal Safety System (PSS)

J.Weng, J.Gustafsson

für Angewandte Wissenschaf

2

Machine Protection at ESS

Machine Protection at ESS Risk management

To define machine protection requirements, the machine protection related risks at ESS are evaluated according to a risk management procedure that follows international standards.

To comply with the requirements each defined protection function is evaluated according to the functional safety standard IEC 61508.

Machine Protection at ESS

Machine Protection Risk Analysis

- ➤Functional description
- ➢ Reaction time requirements
- ➢Reliability requirements
- ➢Preliminary architecture

Layout and scope of Machine Protection Systems of Systems

3

FBIS Reliability Analysis

Zürcher Hochschule für Angewandte Wissenschafter

FBIS Architecture: Overview

Actuator Systems (outside of assessment scope)

- Left SCU handles interfaces to Sensor Systems. Signal is pre-processed, aggregated, and communicated to the DLN.
- DLN performs the protection logic
- Right SCUs handle the interfaces to Actuation Systems.

Analysis Methodology

Zürcher Hochschule

Protection

EUROPEAN

SOURCE

SPALLATION

Logic

Timing

EUROPEAN

SPALLATION

SOURCE

Zürcher Hochschule für Angewandte Wissenschafte

PIL Requirements

- Requirement on integrity against random hardware failures for machine protection are guided by the IEC 61508 standard
- Highest PIL requirement @ESS: **PIL 2**

PIL	SIL (IEC 61508)	Required PFH	Required PFD
PILO	N/A	<= 1 * 10 ⁻⁴	<= 1
PIL1	SIL1	<= 1 * 10 ⁻⁵	<= 1 * 10 ⁻¹
PIL2	SIL2	<= 1 * 10 ⁻⁶	<= 1 * 10 ⁻²
PIL3	SIL3	<= 1 * 10 ⁻⁷	<= 1 * 10 ⁻³
N/A	SIL4	<= 1 * 10 ⁻⁸	<= 1 * 10 ⁻⁴

PFH:

probability of failure per hour **PFD:**

probability of failure per demand

FBIS has a hardware fault tolerance (HFT) of 1,
-> safe failure fraction (SFF) of ≥60% is required.

Safe Failure Fraction (usually determined by FMEDA):

$$SFF = \frac{\lambda_{SD} + \lambda_{SU} + \lambda_{DD}}{\lambda_{SD} + \lambda_{SU} + \lambda_{DD} + \lambda_{DU}}$$

Table 3 – Maximum allowable safety integrity level for a safety function carried out by a type B safety-related element or subsystem

Safe failure fraction of an element	Hardware fault tolerance		
	0	1	2
<60 %	Not Allowed	SIL 1	SIL 2
60 % - <90 %	SIL 1	SIL 2	SIL 3
90 % - <99 %	SIL 2	SIL 3	SIL 4
≥ 99 %	SIL 3	SIL 4	SIL 4

PIL Verification Methodology

Zürcher Hochschule für Angewandte Wissenschafter

Isograph software

Reliability Prediction and FMEDA: Data Sources

Zürcher Hochschule

Reliability

Priority	Failure rate data source
1	Manufacturer datasheet / analysis report
2	SN 29500 [2]

$$\lambda = \sum_{i=1}^{n} (\lambda)_i = \sum_{i=1}^{n} (\lambda_{ref} * \pi_U * \pi_I * \pi_T * \pi_E * \pi_S * \pi_{ES} * \pi_Q * \pi_{PS})_i$$

λ	$\sum_{i=1}^{n} (n)_i$	ng * ng	* 117 * 1	$r_E = r_S =$	n _{ES} « n _Q «	np.

-	٨	Failure rate at operating conditions
-	λ_{ref}	Reference failure rate
-	π_{U}	Voltage stress level dependence factor
-	π_{I}	Current stress level dependence factor
-	π_T	Temperature stress level dependence factor
-	π_{E}	Environmental stress level dependence factor
-	π_{s}	Switching rate stress level dependence factor
-	π_{ES}	Electrical stress level dependence factor
-	π_Q	Quality dependence factor

Power stress level dependence factor π_{PS}

FMEDA

Priority	Failure modes data source
1	Manufacturer data
2	EN 61709:2017 [3]
3	FMD-2016 [4]
4	IEC 62061:2005 [5]

FMEC	FMECA failure modes 🗸 General FMECA 🖌 🚰 🍞 🏹 🐺 🦍						
	D	Description	Effects defined	Contributors defined	Dangerous failure %	Detectable	Effects (immediate)
•	CR632.1	Short	No	N/A	0	Yes	
	CR632.2	Open	No	N/A	0	Yes	
	CR632.3	Drift	No	N/A	0	Yes	

Reliability Prediction: Parameters

zh

Zürcher Hochschule für Angewandte Wissenschafter

Example: Adjustment of parameters/stress factors in Isograph prediction module

Block Properties - U220 : Microcircuit_Linear SN 29500 IC Analog ? X					
General Parameters Rate/Pi Factors	s Tasks Notes Hyperlink				
Quantity:	0				
Adjustment Factor:	1				
Ambient Temperature:	40				
Non-Operating Temperature (C):	20				
Operating Voltage (V):	0.1				
Operating Power (W):	1				
Analog Style:	Switch regulator \sim				
Technology:	CMOS/BICMOS ~				
Rated Voltage (V):	1				
Drift:	Non-drift ~				
Number of Transistors:	33				
Rja (degC/W):	10				
Stress= Temp=	ОК	Cano	el		

FMEDA

- Exclude all no-part and no-effect failures in protection function
- Determine safe failures from electrical drawings/schematics and credit detection methods

Zürcher Hochschule für Angewandte Wissenschaften

• We use the IEC 61508 Failure Model in Isograph

- When no FMEDA was performed, a division of failures into 50% safe and 50% dangerous is assumed
- A CCF Model with a β =factor of 5% is applied
- Diagnostic coverage determined from FMEDA:

DC (*Dangerous Coverage*) = $\frac{\lambda_{DD}}{\lambda_{DD} + \lambda_{DU}}$

• Calculation of PFH/PFD with only dangerous undetectable failures λ_{DU}

neral Notes Hyperlink					
ID:	SCU_SER_IEC				
Generic data group:	SCU-SER				-
Description:	SCU Serializer Failur	SCU Serializer Failure Model			
Model type:	IEC 61508	√ Туре А			1
Failure rate:	4.35E-06	per hr			
Failure rate Std/Erf:	0		Normal		1
MTTR:	8	hrs			
MTTR Std/Erf:	0		Normal	`	1
Test interval:	8760	hrs			
Dangerous failure %:	50				
Dangerous coverage %:	0				
Safe coverage %:	0				
Proof test coverage %:	100				
Overhaul interval:	8760	hrs			

Zürcher Hochschule für Angewandte Wissenschaf

Zürcher Hochschule für Angewandte Wissenschaften

FBIS RBD example

4

ESS integration of FBIS reliability analysis

Machine protection reliability analysis

Example of protection function "BLE-MAG-PF-1.1" Current monitoring of bending magnet power converter.

Machine protection reliability analysis Analysis of sensor system

The machine protection PLC system uses SIL rated components with precalculated values from the manufacturer.

A detailed analysis is performed on the current measurement

Machine protection reliability analysis Interface between PLC based system and FBIS

Analysis of the interface between the PLC based system and FBIS SCU

Machine protection reliability analysis Modification of FBIS model based on input

FBIS architecture must be modified depending on what SCU the input signal is connected to and what actuators that can be used.

In this example the input signals are connected to SCU01 and all actuators can be used.

Signal chain in order 1 to 5

SCU 01

ess

Not all protection functions can use all actuators.

Each protection function needs to be evaluated depending on:

Location of protected element in accelerator

≻Required reaction time.

Machine protection reliability analysis

Example Results for full protection function

PF Tag	Required PIL	Required PFH	Achieved PFH	Max allowable PIL (Architectural Constraints)	Result
BLE-MAG-PF-1.1	PIL 1	<= 1 * 10 ⁻⁵	4,8 * 10 ⁻⁷	PIL 1	Passed

Analysis of all Protection Functions and update of FBIS analysis is currently ongoing

5

Benefits of detailed reliability studies

Benefits of detailed reliability studies

ess

Compliance with requirements

- ➤The calculated results show if a protection function complies with the set requirements, which is defined by the risk assessment.
- ≻Provides a unified way of classifying how reliable all protection functions are
- >Ensures that you have a robust system
- >Justifies cost and effort for additional protection functions if required
- ➤Can prevent over-engineering
 - ✓ Decreased cost
 - ✓ Less components
 - ✓ Less maintenance
 - ✓ More availability

>Helps define diagnostic functions and regular testing of the MP systems

Benefits of detailed reliability studies Finding the weakest links

Each calculation provides the "Minimal cut sets", which provides inputs on what parts of a complex system benefits most of improvements.

Results for block BLE-BCM-PF-1.11					
O Summary	/ O Importance	Cut sets Appearance			
No.	w per hr	Minimal cut set			
1	1,5E-7	MEBT CHOPPER**LEBT CHOPPER*			
2	1,1E-7	CCF_SCU01_SER			
3	1,1E-7	CCF_SCU02_SER			
4	5,0E-8	CCF_LOGIC_DLN_CARRIER_SEG2			
-	0.75.0				

This helps defining where we should put our design efforts.

Discussion

2022-10-20

Contact

Dr. Joanna Weng

- Senior Lecturer
- Certified Functional Safety Engineer FS Eng (TÜV Rheinland)
- Project Manger (Nuclear)

Safety Critical Systems Lab

Zurich University of Applied Sciences (ZHAW)

wenj@zhaw.ch

6

Additional slides

FBIS architecture

Layout and scope of the Fast Beam Interlock System (FBIS)

General Analysis Assumptions

Zürcher Hochschule

- The analysis assumes constant failure rates and therefore the effects of early failures are expected to be removed by appropriate processes;
- Components are not operated beyond their useful life (no wear-out)
- It is assumed that the requirements stated in equipment safety manuals (if applicable) have been adhered to.
- When a diagnostic coverage is assigned to the dangerous failures (λ_{DD}), it must be ensured that the diagnostic coverage is properly analyzed, so that the failure is detected and hazard mitigated within acceptable time period. Where this is not possible it should be assumed that we have 0% diagnostic coverage.

Benefits of detailed reliability studies Diagnostic functions

The analysis can provide valuable feedback for diagnostic functions, such as:

- > How effective is the diagnostic function?
- > How should the function be implemented?
- > How often should the diagnostic function run?

Benefits of detailed reliability studies Proof testing

The analysis can provide valuable feedback for "proof testing", that ensures that the machine protection systems works "as good as new", such as:

- >What parts of a system needs to be tested?
- ≻How should these tests be done?
- ≻How often should the tests be done?